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a b s t r a c t

We present a new method to propagate rotating Bose–Einstein condensates subject to
explicitly time-dependent trapping potentials. Using algebraic techniques, we combine
Magnus expansions and splitting methods to yield any order methods for the multivariate
and nonautonomous quadratic part of the Hamiltonian that can be computed using only
Fourier transforms at the cost of solving a small system of polynomial equations. The
resulting scheme solves the challenging component of the (nonlinear) Hamiltonian and
can be combinedwith optimized splittingmethods to yield efficient algorithms for rotating
Bose–Einstein condensates. The method is particularly efficient for potentials that can be
regarded as perturbed rotating and trapped condensates, e.g., for small nonlinearities, since
it retains the near-integrable structure of the problem. For large nonlinearities, themethod
remains highly efficient if higher order p > 2 is sought. Furthermore, we show how it
can be adapted to the presence of dissipation terms. Numerical examples illustrate the
performance of the scheme.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The centerpiece of thiswork is the construction of an efficient geometric integrator for the two-dimensional harmonically
trapped rotational Schrödinger equation in atomic units (h̄ = m = 1) subject to periodic boundary conditions

i∂tψ(r, t) = HA(t)ψ(r, t), ψ(r, 0) = ψ0 ∈ L2([−π, π]
2), (1)

with the explicitly time-dependent Hamiltonian

HA(t) =
1
2p

Tp +
1
2

(
ωx(t)2x2 + ωy(t)2y2

)
+ΩLz,

where r = (x, y)T , p = (px, py)T , Lz = xpy − ypx denotes the angular momentum operator and pk = −i∂k, k = x, y. This
includes the case of unbounded domains since the solution vanishes up to round-off at sufficiently large spatial intervals
due to the harmonic trapping potential. For simplicity of the presentation, we have chosen a simple form of the Hamiltonian
(1), but our methodology also applies to virtually all relevant polynomial Hamiltonians of degree ≤ 2 in any dimension
with arbitrary time-dependencies and we will show how to extend the presented techniques for more general quadratic
and linear time-dependencies which are used to model collisions of atoms and molecules [1,2]. The generalization to three
dimensions is straightforward and will be briefly addressed in Section 2.
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The efficient solution of (1) is of paramount importance to the computation of the dynamics of rotating Bose–Einstein
condensates as we will see below, and in contrast to previous efforts [3–12], time-dependent (trapping) potentials and non-
linearities can be treatedwithout tempering the algebraic structure of the problem. The presence of such time-dependencies
impedes a simple transformation to a rotating system of coordinates which would eliminate the rotation term Lz for
autonomous HA. We want to stress that this is also the reason why we do not discuss methods that are concerned with
ground state computations, such as imaginary time propagation or minimizing the energy functional. Nevertheless, these
methods are highly relevant in order to obtain suitable initial conditions for the numerical integration.

At any given time t and for any order p > 1, we show that, for a sufficiently small time-step h, there exist cheaply
computable coefficients fj(t, h), gk(t, h), el(t, h) ∈ iR obeying a small system of polynomial equations such that

ef0x
2
ef1y

2
+g1p2x−e1ypxef2x

2
+g2p2y+e2xpyef3y

2
+g3p2x−e3ypx = ϕ

HA
t,t+h + O

(
hp+1) , (2)

where ϕHA
t,t+h denotes the exact flow of (1) from t to t + h. By virtue of this decomposition, named Φ[p]

t,t+h, the position and
moment coordinates are decoupled and can be diagonalized using Fourier transforms. After discretization, only six (one-
dimensional) changes from coordinate to momentum space and vice versa per time-step exponents are required. These
changes are performed by Fast Fourier Transforms (FFT) and hence suggest the name Fourier-splitting. The approximation
preserves unitarity (and thus the L2-norm) and gauge invariance of the exact solution and hence, it can be considered a
geometric integrator in the sense of Ref. [13]. Furthermore, one can associate a time-dependent Hamiltonian with the
decomposition which is exactly solved at each step.

The method is particularly successful for perturbed problems of the form

H = HA(t) + εB(t, r, |ψ |), ε ≪ 1, (3)

with a small parameter ε, and some real-valued function B, which includes the Gross–Pitaevskii equation (GPE) for Bose–
Einstein condensates as special case. The (nonlinear) HamiltonianH with B = g|ψ |

2
+V describes the evolution of a rotating

Bose–Einstein condensate (BEC) subject to a harmonic (parabolic) trapping potential plus some perturbation εV . After the
first experimental realization of BECs [14–16] and the consequently awarded Nobel prize in 2001, continuous attention of
numerical analysts [3–6,8–10,12] has been drawn to the solution of the autonomous version of (1), which is obtained by
dropping all time-dependencies in the Hamiltonian.

The flow of the perturbation B can be easily computed since B is diagonal in coordinate space and leaves the modulus |ψ |

constant, see Lemma 2.1 for details. Using (2), the exact flow can be approximated by Strang’s method to

ϕ
εB̃(t+h)
h/2 ◦Φ

[p]
t,t+h ◦ ϕ

εB̃(t)
h/2 = ϕH

t,t+h + O
(
εh3

+ hp+1) , (4)

where the tildes, B̃, indicate frozen (nonlinear) operators, i.e., ϕB̃(s)
h is the flow of iu̇(t) = B(s)u(t). The term proportional

to hp+1 originates from the error in the approximation of the part HA by the pth order method Φ[p] (2). Observe that the
outer exponentials of (2) are diagonal in coordinate space and no further FFT is necessary to solve the full problem (4). An
alternative approach [4,5] splits the system into simultaneously diagonalizable parts Tx =

1
2p

2
x −Ωypx, Ty =

1
2p

2
y +Ωxpy,

W =
1
2

(
ωx(t)2x2 + ωy(t)2y2

)
+ εB(t) and then

ϕ
W̃ (t+h)
h/2 ◦ ϕ

Tx
h/2 ◦ ϕ

Ty
h ◦ ϕ

Tx
h/2 ◦ ϕ

W̃ (t)
h/2 = ϕH

t,t+h + O
(
h3) , (5)

which also requires six FFTs but the small factor ε in the error is lost. If the time is frozen in HA, Laguerre transforms [6,8–10]
or a decomposition similar to (2) [3] can be used to advanceHA without recovering the small factor and even lose the property
[B, [B, [B,HA]]] = 0 which simplifies the design of highly efficient splitting methods [17].

Eventually, the method will be embedded in such a splitting framework that generalizes (4) and by comparing with (5),
it becomes clear that the number of flows ϕ that have to be treated individually is reduced to two which will enable us to
use optimized splitting methods from the literature. In consequence, we will see in the numerical experiments that the new
procedure is efficient even for non-perturbed settings

H = HA(t) +
1
ε
B(t, r, |ψ |), ε ≪ 1.

The decomposition is built upon earlier works for rotating but autonomous BEC [3] and explicitly time-dependent one-
dimensional harmonic oscillators [18], where Fourier-splittings have been used for simpler Hamiltonians.

In the following section, we give a short introduction to some numerical concepts which will culminate in the derivation
of our method. As described, the method addresses the solution of the dominant part in the Hamiltonian, i.e., kinetic energy,
trapping and rotation, HA. Its form is closely related to a splitting method, in fact, if the coefficients f , g, ewere taken to be

f0 = 0, f1 =
1
4
ωy(t)2, g1 =

1
4
, e1 =

1
2
Ω, f2 =

1
2
ωx(t)2, g2 =

1
2
, e2 = Ω, f3 = f1, g3 = g1, e3 = e1,

we would recover a second order Strang splitting. We show how to modify these scalar coefficients in order yield an
any-order approximation using the same number of exponentials. Once we have established how to solve this part of the
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