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a b s t r a c t

In this paper, a closed-form pricing formula for European options in the form of an infinite
series is derived under the Heston model with the interest rate being another random
variable following the CIR (Cox–Ingersoll–Ross) model. One of the main advantages for
the newly derived series solution is that we can provide a radius of convergence, which is
complemented by some numerical experiments demonstrating its speed of convergence.
To further verify our formula, option prices calculated through our formula are also
compared with those obtained from Monte Carlo simulations. Finally, a set of pricing
formulae are derived with the series expanded at different points so that the entire time
horizon can be covered by converged solutions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In 1973, Black & Scholes [1] made a breakthrough by proposing an elegant model with the underlying price following a
geometric Brownian motion and deriving an analytical formula for European option prices. However, some of its simplified
assumptionsmade to achieve the analytical simplicity and tractability are inappropriate and can causemis-pricing problems.
In particular, one of its main drawbacks is the constant volatility assumption, which contradicts to the phenomenon of
‘‘volatility smile’’ [2] observed in real markets that the implied volatility extracted from real market data tends to exhibit a
‘‘smile’’ curve. As a result, a number of modifications have been proposed to incorporate the non-constant volatility into the
Black–Scholes model.

Non-constant volatilitymodels canmainly be divided into two categories, i.e., local volatility and stochastic volatility. The
former, assuming that the volatility be a deterministic function of the underlying price and time, is considered by Dupire [3],
Derman & Kani [4] and Rubinstein [5]. Unfortunately, empirical studies have already suggested that the ‘‘smile dynamics’’
are poorly captured by local volatility models (e.g., Hagan et al. [6]). Therefore, the latter category, making the volatility of
the underlying price another random variable, has thus become much more popular.

However, due to the addition of another stochastic source, it is very difficult to derive analytical solutions for most of
stochastic volatilitymodels, and numericalmethodsmust be resorted to in these cases. For example, Johnson [7] and Scott [8]
directly simulated the stochastic processes with the Monte Carlo simulation technique, whileWiggins [9] adopted the finite
difference method to solve the PDEs (partial differential equations) governing option prices. Unfortunately, a noticeable
pity for numerical methods is always the lack of speed in computation, which makes it difficult to implement these models
in real markets since model calibration is very time-consuming and the lack of analytical pricing formula can make the
situation evenworse. Therefore, further research interest was led to findingmore appropriate stochastic volatility processes
with analytic pricing formula for European call options. Specifically, Hull & White [10] proposed that the volatility follow
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another geometric Brownian motion and derived a power series solution for option prices. Albeit appealing, the assumption
of the zero correlation between the underlying price and the volatility made in their model is at odds with the so-called
‘‘leverage effects’’ that the underlying price and the volatility should be negatively correlated [11]. Moreover, although an
Ornstein–Uhlenbeck process is adopted for the volatility process in the Stein–Stein model [12] and a closed-form pricing
formula is presented, some of themodel flaws, such as unable to prevent the volatility from going negative, make this model
still unsatisfactory. In 1993, Heston [13] contributed a lot to the literature by incorporating the CIR (Cox–Ingersoll–Ross)
model to describe the volatility process and deriving a closed-form pricing formula for European options. Twomain reasons
can account for its popularity; one is that the volatility process itself satisfies a wide range of basic properties, such as the
obvious non-negative property and the mean-reverting property being consistent with the results of empirical studies [14],
and another is that there exists a closed-form formula when pricing options, which can save us a lot of time and effort when
conducting model calibration. Given the fact that the introduction of the stochastic volatility makes the markets incomplete
and there exist different equivalent martingale measures, the option price under the Heston model is not unique, and the
analytical pricing formula derived by Heston can no longer be used if a different martingale measure is chosen. Recently, He
& Zhu [15,16] presented a different analytical pricing formula for European options under the Hestonmodel by choosing the
so-called minimal entropy martingale measure.

However, it should also be pointed out that the well-known Heston model is not perfect either in many senses (there
may not even be a perfect one!) and many attempts are made to improve its pricing performance in real markets, such as
the introduction of the time-dependent Heston models [17] and the regime-switching Heston models [18]. One of the most
popular approaches is to incorporate the stochastic interest rate into stochastic volatility models to form a hybrid model
since there is a lot of empirical evidence suggesting that introducing stochastic interest rate into option pricing models can
lead to better model performance [19,20], and a number of authors have worked on this area. For instance, a combination of
the correlated Stein–Stein model [21] and the Hull–White interest rate model [22] is adopted in [23] with European options
evaluated under the Fourier cosine expansion framework. Furthermore, approximation formulae for European option prices
are presented when the underlying price follows the Heston stochastic volatility model with the interest rate described by
the CIR model [24].

In this paper, we adopt the Heston-CIR hybridmodel for the underlying price andwe aim to present a closed-form pricing
formula for European options as models with exact and analytical solutions are much more favoured in real markets. Based
on the technique of numeraire change, we firstly obtain a general pricing formula with the unknown characteristic function
of the underlying price under a forward measure. Then, the target characteristic function is analytically worked out written
in the formof an infinite series by expending the solution in terms of the time to expiry; such a series solution is accompanied
by a proof of convergence that a radius of convergence is theoretically figured out. Numerical experiments are carried out
to show the convergence speed as well as the accuracy of the newly derived formula. Finally, for the situation that the time
to expiry is larger than the provided radius of convergence, we have also come out an alternative way by deriving a set of
pricing formulae converging on a particular region with different expansion points so that the entire time horizon can be
covered by converged solutions.

The rest of the paper is organized as follows. In Section 2, a brief introduction of the Heston-CIR hybridmodel is provided.
In Section 3, we firstly introduce a general pricing approach, after which we present an analytical pricing formula in a series
form based on the change of numeraire and the derivation of the characteristic function. A radius of convergence for this
series solution is subsequently provided, and numerical experiments and examples are also presented. In Section 4, a note
on how to deal with the situationwhen the time to expiry exceeds the provided radius of convergence is presented, followed
by some concluding remarks given in Section 5.

2. The Heston-CIR hybrid model

In this section, we will mainly discuss the specific model we adopt for European option pricing. Although the Black–
Scholes model is very popular among market traders, some of the unrealistic assumptions made to achieve analytical
tractability are inappropriate, such as the constant volatility assumption [2] and the constant interest rate assumption [19].
As a result, a number of modifications to the Black–Scholes model have been proposed to incorporate the effect of stochastic
volatility and stochastic interest rate [12,25]. One of the most popular models belonging to the category of stochastic
volatility is the so-called Hestonmodel, and there are mainly two reasons that can account for this. One is that the dynamics
of the Heston model satisfy several properties, such as the non-negative property and the mean-reverting property being
consistentwith realmarket observations, and another is that there exists a closed-formpricing formula for European options,
whichmakes it easy to be implemented in realmarkets.Whatwe adopt here is actually a hybridmodel combining theHeston
stochastic volatility model and the CIR stochastic interest rate model, the dynamics of which under a risk-neutral measure
Q are specified as⎡⎢⎢⎣
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