FLSEVIER

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Affine matrix rank minimization problem via non-convex fraction function penalty

Angang Cui^a, Jigen Peng^{b,*}, Haiyang Li^c, Chengyi Zhang^c, Yongchao Yu^a

- ^a School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China
- ^b School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China
- ^c School of Science, Xi'an Polytechnic University, Xi'an, 710048, China

ARTICLE INFO

Article history:

Received 20 February 2017

Received in revised form 29 December 2017

MSC:

90C26

90C27

90C59

Keywords:

Affine matrix rank minimization

Low-rank

Matrix completion

Fraction function

Iterative singular value thresholding

algorithm

Image inpainting

ABSTRACT

Affine matrix rank minimization problem is a fundamental problem in many important applications. It is well known that this problem is combinatorial and NP-hard in general. In this paper, a continuous promoting low rank non-convex fraction function is studied to replace the rank function in this NP-hard problem. An iterative singular value thresholding algorithm is proposed to solve the regularization transformed affine matrix rank minimization problem. With the change of the parameter in non-convex fraction function, we could get some much better results, which is one of the advantages for the iterative singular value thresholding algorithm compared with some state-of-art methods. Some convergence results are established. Moreover, we proved that the value of the regularization parameter $\lambda>0$ cannot be chosen too large. Indeed, there exists $\bar{\lambda}>0$ such that the optimal solution of the regularization transformed affine matrix rank minimization problem is equal to zero for any $\lambda>\bar{\lambda}$. Numerical experiments on matrix completion problems and image inpainting problems show that our method performs effective in finding a low-rank matrix compared with some state-of-art methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, affine matrix rank minimization (AMRM) problem has attracted much attention in many important applications such as collaborative filtering in recommender systems [1,2], minimum order system and low-dimensional Euclidean embedding in control theory [3,4], network localization [5], and so on. It can be viewed as the following mathematical form

(AMRM)
$$\min_{X \in \mathbb{N}^{m \times n}} \operatorname{rank}(X) \ s.t. \ \mathcal{A}(X) = b$$
 (1)

where the linear map $A: \Re^{m \times n} \mapsto \Re^d$ and the vector $b \in \Re^d$ are given. Without loss of generality, we assume $m \le n$. The matrix completion problem

$$\min_{X \in \mathcal{D}} \operatorname{rank}(X) \text{ s.t. } X_{i,j} = M_{i,j}, \ (i,j) \in \Omega$$
 (2)

E-mail address: jgpengxjtu@126.com (J. Peng).

^{*} Corresponding author.

Fig. 1. The behavior of the fraction function $\rho_a(t)$ for various values of a.

is a special case of the problem (AMRM), where X and M are both $m \times n$ real matrices, the set Ω is a subset of indexes set of all pairs (i,j), and the subset $\{M_{i,j}|(i,j)\in\Omega\}$ of the entries is known. If the projector $\mathcal{P}_{\Omega}: \Re^{m\times n} \to \Re^{m\times n}$ is defined as

$$[\mathcal{P}_{\Omega}X]_{i,j} = \begin{cases} X_{i,j}, & \text{if } (i,j) \in \Omega; \\ 0, & \text{if } (i,j) \notin \Omega, \end{cases}$$
(3)

and the resulting matrix is $M_{\Omega} = \mathcal{P}_{\Omega}X$, then the matrix completion problem can be reformulated as

$$\min_{X \in \mathbb{N}^{m \times n}} \operatorname{rank}(X) \ s.t. \ \mathcal{P}_{\Omega} X = M_{\Omega}. \tag{4}$$

In general, however, the problem (AMRM) is a challenging nonconvex optimization problem and is known as NP-hard [6]. Nuclear-norm affine matrix rank minimization problem (NuAMRM) is the most popular alternative [1,4,6–9], and the minimization has the following form

(NuAMRM)
$$\min_{X \in \mathbb{N}^{m \times n}} \|X\|_* \ s.t. \ \mathcal{A}(X) = b$$
 (5)

for the constrained problem and

(RNuAMRM)
$$\min_{X \in \Re^{m \times n}} \left\{ \|\mathcal{A}(X) - b\|_2^2 + \lambda \|X\|_* \right\}$$
 (6)

for the regularization problem, where $\lambda > 0$ is the regularization parameter, $\|X\|_* = \sum_{i=1}^m \sigma_i(X)$ is the nuclear-norm of matrix X, and $\sigma_i(X)$ presents the ith largest singular value of matrix X arranged in descending order.

As the compact convex relaxation of the NP-hard problem (AMRM), the problem (NuAMRM) possesses many theoretical and algorithmic advantages [10–13]. However, it may be suboptimal for recovering a real low-rank matrix. In fact, the problem (NuAMRM) may yield a matrix with much higher rank and need more observations to recover a real low-rank matrix [1,11]. Moreover, the problem (RNuAMRM) tends to lead to biased estimation by shrinking all the singular values toward zero simultaneously, and sometimes results in over-penalization as the l_1 -norm in compressed sensing [14]. With recent development of non-convex relaxation approach in sparse signal recovery problems, many researchers have shown that using a continuous non-convex function to approximate the l_0 -norm is a better choice than using the l_1 -norm (see, e.g., [15–26]). Meanwhile, some empirical evidence (see, e.g., [27–32]), has shown that, the non-convex algorithms can really make a better recovery in some matrix rank minimization problems. This brings our attention back to the non-convex optimizations.

Inspired by the good performance of the non-convex fraction function in image restoration (see [33]), in this paper, we replace the rank function rank(X) in problem (AMRM) with a continuous promoting low rank non-convex function:

$$P_a(X) = \sum_{i=1}^{m} \rho_a(\sigma_i(X)) \tag{7}$$

where the non-convex function

$$\rho_a(t) = \frac{a|t|}{a|t|+1} \tag{8}$$

Download English Version:

https://daneshyari.com/en/article/8902118

Download Persian Version:

https://daneshyari.com/article/8902118

Daneshyari.com