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a b s t r a c t

Affine matrix rank minimization problem is a fundamental problem in many important
applications. It is well known that this problem is combinatorial and NP-hard in general.
In this paper, a continuous promoting low rank non-convex fraction function is studied to
replace the rank function in this NP-hard problem. An iterative singular value thresholding
algorithm is proposed to solve the regularization transformed affinematrix rankminimiza-
tion problem.With the change of the parameter in non-convex fraction function, we could
get somemuch better results, which is one of the advantages for the iterative singular value
thresholding algorithm compared with some state-of-art methods. Some convergence
results are established.Moreover, we proved that the value of the regularization parameter
λ > 0 cannot be chosen too large. Indeed, there exists λ̄ > 0 such that the optimal solution
of the regularization transformed affine matrix rank minimization problem is equal to
zero for any λ > λ̄. Numerical experiments on matrix completion problems and image
inpainting problems show that ourmethod performs effective in finding a low-rankmatrix
compared with some state-of-art methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, affinematrix rankminimization (AMRM) problem has attractedmuch attention inmany important appli-
cations such as collaborative filtering in recommender systems [1,2],minimumorder systemand low-dimensional Euclidean
embedding in control theory [3,4], network localization [5], and so on. It can be viewed as the following mathematical
form

(AMRM) min
X∈ℜm×n

rank(X) s.t. A(X) = b (1)

where the linear map A : ℜ
m×n

↦→ ℜ
d and the vector b ∈ ℜ

d are given. Without loss of generality, we assume m ≤ n. The
matrix completion problem

min
X∈ℜm×n

rank(X) s.t. Xi,j = Mi,j, (i, j) ∈ Ω (2)
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Fig. 1. The behavior of the fraction function ρa(t) for various values of a.

is a special case of the problem (AMRM), where X andM are bothm× n real matrices, the set Ω is a subset of indexes set of
all pairs (i, j), and the subset {Mi,j|(i, j) ∈ Ω} of the entries is known. If the projector PΩ : ℜ

m×n
→ ℜ

m×n is defined as

[PΩX]i,j =

{
Xi,j, if (i, j) ∈ Ω;
0, if (i, j) ̸∈ Ω ,

(3)

and the resulting matrix isMΩ = PΩX , then the matrix completion problem can be reformulated as

min
X∈ℜm×n

rank(X) s.t. PΩX = MΩ . (4)

In general, however, the problem (AMRM) is a challenging nonconvex optimization problem and is known as NP-hard [6].
Nuclear-norm affine matrix rank minimization problem (NuAMRM) is the most popular alternative [1,4,6–9], and the
minimization has the following form

(NuAMRM) min
X∈ℜm×n

∥X∥∗ s.t. A(X) = b (5)

for the constrained problem and

(RNuAMRM) min
X∈ℜm×n

{
∥A(X) − b∥2

2 + λ∥X∥∗

}
(6)

for the regularization problem, where λ > 0 is the regularization parameter, ∥X∥∗ =
∑m

i=1σi(X) is the nuclear-norm of
matrix X , and σi(X) presents the ith largest singular value of matrix X arranged in descending order.

As the compact convex relaxation of the NP-hard problem (AMRM), the problem (NuAMRM) possesses many theoretical
and algorithmic advantages [10–13]. However, it may be suboptimal for recovering a real low-rank matrix. In fact, the
problem (NuAMRM) may yield a matrix with much higher rank and need more observations to recover a real low-rank
matrix [1,11]. Moreover, the problem (RNuAMRM) tends to lead to biased estimation by shrinking all the singular values
toward zero simultaneously, and sometimes results in over-penalization as the l1-norm in compressed sensing [14]. With
recent development of non-convex relaxation approach in sparse signal recovery problems, many researchers have shown
that using a continuous non-convex function to approximate the l0-norm is a better choice than using the l1-norm (see, e.g.,
[15–26]). Meanwhile, some empirical evidence (see, e.g., [27–32]), has shown that, the non-convex algorithms can really
make a better recovery in some matrix rank minimization problems. This brings our attention back to the non-convex
optimizations.

Inspired by the good performance of the non-convex fraction function in image restoration (see [33]), in this paper, we
replace the rank function rank(X) in problem (AMRM) with a continuous promoting low rank non-convex function:

Pa(X) =

m∑
i=1

ρa(σi(X)) (7)

where the non-convex function

ρa(t) =
a|t|

a|t| + 1
(8)
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