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a b s t r a c t

We consider the use of adaptive timestepping to allow a strong explicit Euler–Maruyama
discretisation to reproduce dynamical properties of a class of nonlinear stochastic differen-
tial equations with a unique equilibrium solution and non-negative, non-globally Lipschitz
coefficients. Solutions of such equationsmay display a tendency towards explosive growth,
countered by a sufficiently intense and nonlinear diffusion.

We construct an adaptive timestepping strategy which closely reproduces the almost
sure (a.s.) asymptotic stability and instability of the equilibrium, and which can ensure the
positivity of solutions with arbitrarily high probability. Our analysis adapts the derivation
of a discrete form of the Itô formula from Appleby et al. (2009) in order to deal with the
lack of independence of the Wiener increments introduced by the adaptivity of the mesh.
We also use results on the convergence of certainmartingales and semi-martingales which
influence the construction of our adaptive timestepping scheme in a way proposed by Liu
& Mao (2017).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider the scalar stochastic differential equation (SDE) of Itô type

dX(t) = X(t)f (X(t))dt + X(t)g(X(t))dW (t), t ≥ 0, (1)
X(0) = ς ≥ 0,

where (W (t))t≥0 is a one-dimensional Wiener process; let (Ft )t≥0 be the natural filtration of W . The drift and diffusion
coefficients satisfy:

Assumption 1. Let f , g : R → [0,∞) be non-negative functions such that g(u) ̸= 0 for u ̸= 0.

In this article, we use an adaptive timestepping strategy to reproduce qualitative properties of solutions of (1) in an
explicit strong Euler–Maruyama discretisation given by

Xn+1 = Xn (1 + hnf (Xn) + g(Xn) [W (tn) − W (tn−1)]) , n ∈ N, (2)
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with X0 = X(0) = ς , t−1 = 0. Each hn is one of a sequence of random timesteps, generated as a function of Xn, and we set
{tn :=

∑n
i=1hi}n∈N.

Our first goal is to design a strategy that allows discretisations of the form (2) to closely reproduce the almost sure (a.s.)
stability and instability of the unique equilibrium solution X(t) ≡ 0 of (1). The strategy will be required to capture the
stabilising effect of the diffusion as it counters the tendency towards explosive growth due to the positive drift. Since wewill
use martingale and semimartingale convergence results in our analysis, wemust adopt elements of the approach developed
by Liu & Mao [1] in order to ensure that those results are applicable.

Our second goal is to investigate the effect of our adaptive timestepping strategy on the probability of positivity of
solutions of (2). Unique solutions of (1) when ς > 0 are necessarily positive, though a highly nonlinear diffusion coefficient
makes it likely that trajectories of a fixed-step discretisation will overshoot the equilibrium and become negative. Adaptive
timestepping was successfully used in [2] to preserve positivity with high probability in equations with either a dominant
nonlinear and strongly zero-reverting drift coefficient, or a dominant and highly variable nonlinear diffusion coefficient. That
article was a follow up to [3], and our analytic technique is adapted from both.

An analysis of the ability of explicit numerical methods with adaptive timesteps to reproduce the dynamics of solutions
of (1) is important because explicit Euler methods of the form (2) with constant stepsize hn ≡ h are known (see [4]) to fail to
converge strongly to solutions of (1) if either f or g grows superlinearly, as is the case for (5). Fixed-step tamingmethodswere
introduced first in [5] to provide an alternative class of strongly convergent explicit methods for such equations, butmay not
provide an optimal reproduction of qualitative behaviour: see [6,7]. The semi-discrete method proposed in [8] and applied
to equations with super-linear coefficients in [9] succeeds in preserving positivity. Drift implicit methods in combination
with an appropriate transform have also been shown in [10] to preserve the domain of solutions of SDEs with both sublinear
and superlinear coefficients.

It was recently shown (see [7,11]) that, for equations with one-sided Lipschitz drift and globally Lipschitz diffusion
coefficients, adaptive timestepping strategies can be used to ensure strong convergence of solutions of the explicit Euler
method with variable stepsizes, and therefore their effect on the dynamics of solutions is of interest: see [12].

Let us now consider a minimal set of additional constraints to place upon f and g . Suppose first that f and g are
locally Lipschitz continuous and that Assumption 1 holds. Then there exists a unique, continuous Ft-measurable process
X (see [13,14]) satisfying (1) on the interval [0, τ ςe ), where τ ςe = inf{t > 0 : |X(t, ς )| ̸∈ [0,∞)}. Define the first hitting time
of zero to be υςe = inf{t > 0 : |X(t, ς )| = 0.}. It was proved in [15] that υςe = τ

ς
e = ∞, and therefore unique positive

solutions exist on all of R+, if

sup
u̸=0

2f (u)
g2(u)

= β < 1. (3)

Condition (3) is close to being sharp. (1) has an equilibrium solution X(t) ≡ 0, and (see [15]) if

lim
u→0

2f (u)
g2(u)

> 1,

then this equilibrium is a.s. unstable: for all ς > 0,

P
[
lim
t→∞

X(t) = 0
]

= 0.

Alternatively, if

lim
u→0

2f (u)
g2(u)

< 1, (4)

then for all ς > 0

P
[
lim
t→∞

X(t) = 0
]
> 0.

Conditions (3) and (4) require the diffusion coefficient g to have a stabilising effect. For example, consider the scalar
stochastic differential equation with positive polynomial coefficients

dX(t) = X(t)
(
Xν(t)dt + σXν/2(t)dW (t)

)
, t ≥ 0, X(0) = ς ≥ 0, (5)

where ν ∈ (0,∞). In this case f (u) = uν and g(u) = σuν/2, and therefore (3) is satisfied with limu→0
2f (u)
g2(u)

= 2/σ 2 < 1 when
σ 2 > 2. So if the intensity of the stochastic perturbation is sufficiently large, unique positive solutions exist on [0,∞) and
converge to zero with positive probability. If σ = 0, then (5) becomes the ordinary differential equation

x′(t) = [x(t)]1+ν, t ≥ 0, x(0) = ς > 0,
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