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a b s t r a c t

Conventional methods for testing the mean vector of a P-variate Gaussian distribution
require a sample size N greater than or equal to P . But, in high dimensional situations, that
is when N is smaller than P , special and new adjustments are needed. Although Bayesian-
empirical methods are well-succeeded for testing in high dimension, their performances
are strongly dependent on the actual unknown covariance matrix of the Gaussian random
vector. In this paper, we introduce a hybrid frequentist–Bayesian Monte Carlo test and
prove that: (i) under the null hypothesis, the performance of the proposed test is invariant
with respect to the real unknown covariancematrix, and (ii) the decision rule is valid,which
means that, in terms of expected loss, the performance of the proposed procedure can
always be made as good as the exact Bayesian test and, in terms of type I error probability,
the method is always of α level for arbitrary α ∈ (0, 1).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hypothesis testing for the mean, µ, of a P-variate normal vector, X̃ = (X1, . . . , XP ), with hypotheses of the form
H0 : µ = µ0 against H1 : µ ̸= µ0, µ0 known, is one of the most classical problems of the statistical multivariate analysis
field. The test criterion is usually constructed in terms of a ‘measure of evidence’ in favor of (or against) the null hypothesis.
The measure of evidence is a real-valued function of the sample composed by N observations of a random vector X̃ . A quite
peculiar problem is the case where the covariance matrix of X̃ , sayΣ , is unknown and the sample size, N , is smaller than the
number P of variables in X̃ . In this case, classical solutions, like e.g. the Hotelling’s T 2 test, are not applicable [1]. Situations
involving P > N are broadly referred in the literature through the term ‘high dimensional problems’.

Althoughmanyquestions remainunsolved in this field, the study of highdimensional problemsdates back to decades, and
many solutions are due to efforts to solve model selection problems [2]. Among the pioneers, the nonparametric empirical
Bayes approach developed by Robbins [3–5] is notorious. The idea is to take Hj as true if the posterior probability of Hj turns
out to be greater than 0.5, for j = 0, 1. But the method is impractical when the exact calculation of the posterior distribution
is not computable, which is not rare in practice. Motivated by the problems involving microarray experiments, [6] and [7]
developed the nonparametric empirical Bayes method. For this last, the performance is greatly dependent on restrictive
conditions over the choice of the prior distribution and over the actual structure of the covariance matrix Σ . Furthermore,
according to [8], page 271, the nonparametric empirical Bayes method does not perform well even for large sample sizes.
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More recently, inspired by problems involving goodness-of-fit testing and functional data analysis, [9] introduced a
multiple testing procedure, sensitive to the data, that complieswith the asymptotic-consistency principle of [10]. The results
of [9] are possible by assuming that the covariance matrix is known, although such assumption is rarely true in practice.
Furthermore, the asymptotic-consistency is obtained by using non-informative priors, which is an inconvenient limitation
in caseswhere usage of informative priors is desired or necessary. In the same direction, [11] suggests to use the Bayes Factor
as a measure of evidence to perform the test with hypotheses H0 : µ = 0 versus arbitrary H1. Like previous approaches, the
prior distribution in the method of [11] cannot be chosen according to the analyst’s uncertainty, but, instead, the user has to
elicit a prior shape that favors a computable posterior distribution. Some elicited solutions follow multivariate Cauchy [12],
smooth Cauchy [11], and mixture of Zellner’s g-priors [13].

As a rule, the performances of former Bayesian methods are strongly dependent upon the unknown nuisance matrix,
Σ . Also, they share the limitation of supporting performance evaluations under asymptotic arguments. But, as well stated
by [14]:

‘The justification of asymptotic consistency will not help the naive user who should be more concerned with selection bias and
the instability of the procedures’.

Obviously, importance of large numbers properties is undeniable for statistical methodologies in general. But, asymptotic
efficiency is not so useful when N is known to be small, which is usually the case in high dimensional problems. To solve this
problem, the present paper introduces a hybrid methodology, which is so because it embraces frequentist and Bayesian
reasoning in order to construct a method that is simultaneously sensitive to prior uncertainty and to sample variation.
The solution is valid for any sample size and arbitrary prior distributions. The proposed method is valid for composite
hypotheses of the form H0 : µ = µ0 against H1 : µ ̸= µ0, and also for comparing G populations, i.e., hypotheses of the
form H0 : µ1 = · · · = µG against H1 : µi ̸= µj for some i ̸= j, where µi, i = 1, . . . ,G, is the mean vector of population i.
The Bayes Factor is the measure of evidence used to construct the decision rule. Following [15], a one-dimensional sufficient
statistic is used to construct the posterior distribution.

Unfortunately, just like former methods, the shape of the posterior distribution of our method remains unknown. To
resolve this problem, the test criterion is formulated through a Monte Carlo approach. For this, we prove that: (i) the
performance of the proposed method in terms of type I error probability is invariant with respect to Σ , (ii) the decision
rule is valid in practice, i.e., one can always calculate the required number of Monte Carlo simulations (m) for a true control
of the expected loss in comparison to the exact Bayesian test, (iii) the method does not require a prior information about the
nuisance matrix Σ , (iv) all results are valid for finite and even small sample sizes (N), and (v) arbitrary prior distributions
can be used, that is, does not matter if priors are elicited for optimality in any sense or if they represent the actual user’s
uncertainty about µ. All results were obtained under analytical arguments.

The content of this paper is organized in the following way: next section establishes the main definitions and notation
for tests based on the Bayes Factor and on loss functions. Section 3 introduces matrix operators that shall be hereinafter
necessary. Section 4 introduces our Bayesian test in high dimension along with the demonstration of its main properties.
Section 5 contextualizes applications of the proposed method for: control charts with heterogeneous variability, dependent
longitudinal data, and multivariate sequential analysis for post-market drug and vaccine safety surveillance. Section 6
presents the main conclusions.

2. Bayes factor and loss functions

Under the conventional statistical inference theory, statistical hypotheses are two statements about a population
parameter θ ∈ RK , K ∈ N. An usual format of the hypotheses is H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where Θ0 and Θ1
are subsets of the parameter space,Θ , such thatΘ0 ∩Θ1 = ∅. H0 and H1 are called the null hypothesis and the alternative
hypothesis, respectively. A statistical hypothesis test is a rule that establishes for which values of the sample the hypothesis
H0 is taken as true and for which values the hypothesis H1 is taken as true. The decision of taking Hi as true can be based on
a random sample, X = (X̃1, . . . , X̃N )′, from the population, where X̃j is a P-variate random variable for each j = 1, . . . ,N .
In practice, an arbitrary real-valued function of the sample, namely ‘measure of evidence for Hi’, i = 0, 1, is used to draw a
decision. Small observed values for the measure of evidence for H1 suggests that H0 is to be taken as true and vice-verse.

Before defining ameasure of evidence, it is necessary to define the empirical information for θ . Let T (X) denote a sufficient
statistic for θ based on the (N × P)-dimensional random sample X. T (X) is also suggestively referred as the ‘empirical
information’ for θ . T (X) can be any mapping of the sample (not involving θ ) from RN to RM , with M ≤ N . For example,
a special but quite diffused option is to set the whole sample to be the empirical information, i.e., T (X) := X, which is the
more common setting in the Bayesian practice and that generates a particular posterior distribution involving the likelihood
function with respect to the observed vector X = x0. As discussed by [15], another example is the case where T (X) is a
real-valued function, like a one-dimensional sufficient test statistic, for example.

LetW (T (X)), or simplyW (T ), denote the ‘measure of evidence’ forHi, which is a real-valued function of T (X). The function
W (T ) is obtained by combining the empirical informationwith the ‘prior’ information. Before having a realization x0 ofX, the
analyst might have insights, apart the data, of what would be the most, such as the less, plausible values for θ . This analyst’s
uncertainty can be measured through a probability density, called ‘prior distribution’ and here denoted by πθ (y), y ∈ RK .
Using the observed empirical information, T (x0), the analyst can update his uncertainty about θ by using the Bayes’ rule.
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