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a b s t r a c t

This work is devoted to the quadrature rules and asymptotic expansions for two classes
of highly oscillatory Airy integrals on an infinite interval. We first derive two important
asymptotic expansions in inverse powers of the frequency ω. Then, based on structure
characteristics of the two asymptotic expansions in inverse powers of the frequency
ω, both the so-called Filon-type method and the more efficient Clenshaw–Curtis–Filon-
type method are introduced and analyzed. The required moments in the former can be
explicitly expressed by theMeijer G-functions. The latter can be implemented inO(N logN)
operations, based on fast Fourier transform (FFT) and fast computation of the modified
moments. Here, we can construct two useful recurrence relations for computing the
required modified moments accurately, with the help of the Airy’s equation and some
properties of the Chebyshev polynomials. Particularly, we also provide their error analyses
in inverse powers of the frequency ω. Furthermore, the presented error analysis shows
the advantageous property that the accuracy improves greatly as ω increases. Numerical
examples are provided to illustrate the efficiency and accuracy of the proposed methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we are concerned with the numerical evaluation of singular oscillatory infinite integrals of the forms

I1[f ] =

∫
+∞

0
xα f (x)Ai(−ωx)dx, (1.1)

I2[f ] =

∫
+∞

0
xα ln(x)f (x)Ai(−ωx)dx, (1.2)

where α ≤ 0, f is a sufficiently smooth function on [0, +∞), ω is a positive parameter, and Ai(z) is an Airy function
[1, p. 446]. Moreover, the two integrals (1.1) and (1.2) arise widely in many areas of science and engineering such as
astronomy, electromagnetics, acoustics, scattering problems, physical optics, electrodynamics, computerized tomography,
and applied mathematics [2–7]. In particular, it should be noted that the transforms (1.1) and (1.2) are infinite integrals
with singularities of algebraic or logarithmic type, and oscillatory kernel functions, respectively. In most of the cases, such
integrals cannot be calculated analytically, and then one has to resort to numerical methods. Traditionally one would have
to resolve the oscillations by taking several sub-intervals for each period, resulting in a scheme whose complexity would
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grow linearly with the frequency of the oscillations. Therefore, it is very difficult to approximate accurately using standard
methods, e.g., Gaussian quadrature rule. It is also noteworthy that the computation of the integrals (1.1) and (1.2) is less
studied. This motivates us to develop accurate and efficient quadrature rules for computing these integrals.

Here, we would also like to mention some papers related to the integrals considered in this article. In recent years, there
has been tremendous interest in developing numerical methods for the nonsingular or singular Bessel integrals on finite
interval. Many numerical schemes were developed for computing generalized Bessel transforms

∫ b
a f (x)Jm(ωg(x))dxwithout

singularity (see [8–18]). Moreover, for the Bessel transform
∫ 1
0 xα(1 − x)β f (x)Jm(ωx)dx, α, β > −1, with singularities at the

two endpoints, some researchers developed a few quadrature rules such as the orthogonal expansion method [19], the Filon-
typemethod [20], and the Clenshaw–Curtis–Filon-typemethod [20,21]. Xu and Xiang in [22,23] proposed the Clenshaw–Curtis–
Filon-type method for computing the oscillatory Airy integrals

∫ 1
0 xα(1 − x)β f (x)Ai(−ωx)dx, α, β > −1, with singularities

at the two endpoints, and the highly oscillatory finite Hankel transform
∫ 1
0 f (x)H (1)

ν (ωx)dx, respectively. For the oscillatory
singular integral

∫ b
0 xα(b−x)β f (x)H (1)

ν (kx)eiωxdx, β > −1, α−|ν| > −1,with singularities at the two endpoints, He et al. [24]
and Xu [25] developed a special Gauss-type method and a Clenshaw–Curtis–Filon-type method, respectively. The first author
of this paper and Ling, Ma in [26,27] also presented the Clenshaw–Curtis–Filon-type method for computing a wide range of
singular integrals with many different oscillatory kernel functions. On the other hand, we should mention several related
articles for computing infinite oscillatory integrals. As early as in 1976, Blakemore et al. [28] reviewed several numerical
methods for computing infinite range oscillatory integrals. However, thosemethods in [28] converge slowly, and have to use
an extrapolation technique to accelerate convergence. Recently, Hascelik in [29] presented an asymptotic Filon-type method
for calculating

∫
+∞

a f (x)eiωg(x)dx. Based on the ideas of [29], Chen in [30,31] gave efficient numerical methods to evaluate∫
+∞

a f (x)Jm(ωx)dx. However, the algorithm (3.9) in [31] to calculate the generalizedmoments by transforming the Chebyshev
polynomial Tj(x) into power series of xj is quite unstable for large j. In addition, it is worth pointing out that Siraj-ul-Islam
et al. propose a few efficient numerical methods for computing several kinds of highly oscillatory integrals [32–34].

For convenience, we only consider the evaluation of (1.1) and (1.2) for the case limx→+∞f (k)(x) = Ak (constant),
k = 0, 1, 2, . . .. Additionally, we transfer (1.1) and (1.2) into the following forms

I1[f ] = I11[f ] + I12[f ],
I2[f ] = I21[f ] + I22[f ],

where

I11[f ] =

∫ 1

0
xα f (x)Ai(−ωx)dx, (1.3)

I12[f ] =

∫
+∞

1
xα f (x)Ai(−ωx)dx, (1.4)

I21[f ] =

∫ 1

0
xα ln(x)f (x)Ai(−ωx)dx, (1.5)

I22[f ] =

∫
+∞

1
xα ln(x)f (x)Ai(−ωx)dx. (1.6)

Here, the two finite singular oscillatory integrals I11[f ] and I21[f ] on [0, 1] in (1.3) and (1.5) can be accurately calculated by the
efficient algorithms provided in [22,26], respectively. Consequently, our main goal in this paper is to introduce and analyze
two efficient quadrature rules for the integrals (1.4) and (1.6). One is the so-called Filon-type method. The other is the more
efficient Clenshaw–Curtis–Filon-type method. In order to develop the two methods, and then give their error analysis, we
can derive two important asymptotic expansions in inverse powers of the frequency ω. In addition, we construct two useful
recurrence relations for computing the requiredmodifiedmoments. Here, the requiredmodifiedmoments can be accurately
computed by using the forward recursion as long as ω ≥ 2j. Moreover, for ω < 2j Oliver’s algorithm [35] and Lozier’s
algorithm [36] with the starting values and end values are numerically stable. Moreover, the interpolation coefficient ak in
(4.29) can be accurately computed by using an efficient algorithm (see [37]), based on fast Fourier transform (FFT). Therefore,
the proposed Clenshaw–Curtis–Filon-type method can be efficiently implemented in O(N logN) operations, which avoids
solving an ill-conditioned linear system with O(N3) operations. Not only for the well-behaved f (x), more importantly, but
also for the ill-behaved f (x), the advantage of the presented Clenshaw–Curtis–Filon-type method, becomes very apparent
once we use a huge number of nodes, exploiting the power of fast Fourier transform (FFT).

The organization of this paper is as follows. In the next section, two key asymptotic expansions in inverse powers of
ω are derived. Then, based on structure characteristics of the asymptotic expansions, we present a Filon-type method and
provide its error analysis. Here, The requiredmoments can be explicitly expressed by theMeijer G-functions. Section 3 gives a
Clenshaw–Curtis–Filon-typemethod and its error analysis. Particularly, by constructing two important recurrence relations,
the required modified moments in the Clenshaw–Curtis–Filon-type method can be accurately and efficiently computed.
Moreover, in Sections 2–3, some numerical examples are used to show the accuracy and efficiency of these quadrature
rules. All these presented methods share an advantageous property that the error decreases greatly as ω increases.
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