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a b s t r a c t

The purpose of this paper is to present a uniform finite differencemethod for the numerical
solution of a second order singularly perturbed delay differential equation. The problem
is solved by using a hybrid difference scheme on a Shishkin-type mesh. The method is
shown to be uniformly convergent with respect to the perturbation parameter. Numerical
experiments illustrate in practice the result of convergence proved theoretically.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Singularly perturbed differential equations are of practical interest in models of instantaneous phenomena in the
biosciences and control theory. Singularly perturbed delay differential equations are identified by those problems in which
the highest derivative term is multiplied by a small parameter and involving one or more delay term. This type problems
occur where the future depends not only on the immediate present, but also on the past history. Such problems govern
frequently in the mathematical modeling of various practical phenomena, the study of bistable devices [1], first exit time
problems in the modeling of the determination of expected time for the generation of action potential in nerve cells by
random synaptic inputs in dendrites [2], description of the human pupil–light reflex [3], a variety ofmodels for physiological
processes or diseases [4,5], evolutionary biology [5], variational problems in control theory [6].

Motivated by the works of [7,8], we consider the following singularly perturbed delay initial value problem: find u ∈

C0
(
Ī
)
∩ C1 (I) ∩ C2 (I∗) such that

Tu(t) ≡ εu′′(t) + a(t)u′(t) + f (t, u(t), u(t − r)) = 0, t ∈ I∗, (1.1)

u(t) = ϕ(t), t ∈ I0, (1.2)

u′(0) = A/ε, (1.3)

where I = (0, T ], I∗ = ∪
m
p=1Ip, Ip =

{
t : rp−1 < t < rp

}
, rp = pr for 1 ≤ p ≤ m and I0 = [−r, 0]. 0 < ε ≤ 1 is the

perturbation parameter, r > 0 is a constant delay, A is a constant, a(t) ≥ α > 0, ϕ(t) and f (t, u, v) are given sufficiently
smooth functions satisfying certain regularity conditions in Ī and Ī × R2, respectively, and moreover⏐⏐⏐⏐ ∂ f

∂u

⏐⏐⏐⏐ ≤ M1 and
⏐⏐⏐⏐ ∂ f∂v

⏐⏐⏐⏐ ≤ M2, (1.4)
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where M1 and M2 are positive constants. Under these assumptions, this type of problems (1.1)–(1.3) has a unique solution
on the interval I (see [7,8]).

The numerical study of first-order singularly perturbed delay differential equation can be found in [9–14] and references
therein. The numerical study of second-order singularly perturbed delay differential equations is initiated in [7,8,15,16]. But
they have focused on first order uniformly convergent schemes. In [17], authors have considered a second order uniformly
convergent scheme for a singularly perturbed initial value problem without delay. Due to the delay term, the boundary
and interior layers may occur in the exact solution. Hence the singularly perturbed delay differential problem (1.1)–(1.3) is
different from the singularly perturbed problem considered in [17].

In this article, our main objective is to construct a higher order hybrid numerical scheme for the singularly perturbed
delay differential problem (1.1)–(1.3). Our scheme combines second-order difference schemes on the fine mesh with the
midpoint upwind scheme on the coarse mesh, which is a modification of the difference scheme used in [18–20].

The rest of the paper is organized as follows. In Section 2, we state some important properties of the exact solution. In
Section 3, we describe the hybrid finite difference scheme and introduce a Shishkin-type mesh. In Section 4 we analyze the
convergence properties of the scheme. Numerical examples are presented in Section 5.

Notation. Throughout this paper, we assume C denotes a generic positive constant that may take different values in the
different formulas, but is always independent of N and the mesh.

2. The continuous problem

Here we show some properties of the solution of (1.1)–(1.3), which are needed in later sections for the analysis of the
appropriate numerical solution. For any continuous function g(t), we use ∥g∥∞ for the continuous maximum norm on the
corresponding interval.

In the following error analysis, we need the bounds of the fourth order derivative of the exact solution. Under the
assumptions ϕ ∈ C3 (I0) , a ∈ C3

(
Ī1
)
and f ∈ C3

(
Ī1 × R2

)
, we have at least u ∈ C4

(
Ī1
)
by using the Peano Theorem.

Recursively, under the conditions u ∈ C4
(
Īp
)
, a ∈ C3

(
Īp+1

)
and f ∈ C3

(
Īp+1 × R2

)
with 1 ≤ p < m, we also have at least

u ∈ C4
(
Īp+1

)
. Hence,

ϕ ∈ C3 (I0) , a ∈ C3(Ī) and f ∈ C3 (Ī × R2) (2.1)

imply u ∈ C4
(
Ī
)
at least.

Lemma 1. Under the assumptions (2.1), the solution u of problem (1.1)–(1.3) satisfies the following bounds⏐⏐u(k)(t)
⏐⏐ ≤ C

{
1 + ε−ke−αt/ε} , t ∈ Ī1, 0 ≤ k ≤ 4, (2.2)⏐⏐u(k)(t)

⏐⏐ ≤ C
{
1 + ε1−ke−α(t−rp−1)/ε

}
, t ∈ Īp, 2 ≤ p ≤ m, 0 ≤ k ≤ 4. (2.3)

Proof. Our proof is given step by step. On the first interval Ī1, the results (2.2) are easy to obtain from [17, Lemma 1]. Since
u ∈ C1 (I), from (2.2) we have⏐⏐u′(r1)

⏐⏐ ≤ C
(
1 + ε−1e−αr1/ε

)
≤ C

(
1 +

1
αr1

e−αr1/(2ε)
)

≤ C, (2.4)

where we have used the following inequality

xke−x
≤ Ce−x/2 for x ≥ 0 and k ∈ R+.

Applying the same method as that in [17, Lemma 1] we can get⏐⏐u(k)(t)
⏐⏐ ≤ C

{
1 + ε1−ke−α(t−r1)/ε

}
, t ∈ Ī2, 0 ≤ k ≤ 4. (2.5)

By using the same method we also can obtain the desired results (2.3) for t ∈ Īp with 3 ≤ p ≤ m.
In order to prove that the numerical method is ε-uniform, more precise information on the behavior of the exact solution

of problem (1.1)–(1.3) is needed. This is obtained by writing the solution in the form

u(t) = v(t) + w(t), t ∈ I ∪ I0, (2.6)

where v(t) and w(t), respectively, are the regular and singular components of u(t). The regular component v(t) is the
solution of

Tv(t) = 0, t ∈ I∗ (2.7)

with initial value conditions

v(t) = v0(t) + εv1(t) + ε2v2(t) + ε3v3(t), t ∈ I0, (2.8)

v
′

(0) = v
′

0 (0) + εv
′

1 (0) + ε2v
′

2 (0) + ε3v
′

3 (0), (2.9)
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