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a b s t r a c t

In Andrei (2017), a class of efficient conjugate gradient algorithms (ACGSSV) is proposed
for solving large-scale unconstrained optimization problems. However, due to a wrong
inequality and an incorrect reasoning used in analyzing the global convergence property
for the proposed algorithm, the proof of Theorem 4.2, the global convergence theorem, is
incorrect. In this paper, the necessary corrections are made. Under common assumptions,
it is shown that Algorithm ACGSSV converges linearly to the unique minimizer.
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1. Introduction

Due to simple computation and low memory requirements, conjugate gradient (CG) methods are particularly effective
for solving large-scale optimization problems in the following form,

min
x∈Rn

f (x), (1.1)

where f : Rn
→ R is a continuously differentiable function. For a detailed survey of conjugate gradient methods, see [1].

Throughout the paper, ∥ · ∥ denotes the Euclidean norm on Rn. For convenience, we denote f (xk) by fk, and ∇f (xk) by gk.
Recently, based on the symmetrical scaled Perry CG direction matrix and the self-scaling memoryless BFGS update,

Andrei [2] suggested an accelerated adaptive class of nonlinear conjugate gradient algorithms, namely ACGSSV. More
precisely, given an initial point x0 ∈ Rn, it generates a sequence {xk} as

xk+1 = xk + ξkαkdk, (1.2)

where the stepsize αk is computed by the standard Wolfe line search conditions (see [3] for details):{
f (xk + αkdk) − fk ≤ ραkgT

k dk,

∇f (xk + αkdk)Tdk ≥ σgT
k dk,

(1.3)
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with 0 < ρ < σ < 1, dk is the search direction defined by

d0 = −g0,
dk+1 = −Pk+1gk+1, k = 0, 1, 2, . . . , (1.4)

where the symmetrical scaled Perry CG direction matrix Pk+1 ∈ Rn×n is computed as

Pk+1 = I −
skyTk + yksTk

yTk sk
+ ηk

sksTk
yTk sk

, (1.5)

in which sk = xk+1 − xk, yk = gk+1 − gk, and the positive scalar parameter ηk is given by

ηk =

⎧⎪⎪⎨⎪⎪⎩
ηk, if ηk > 2

∥yk∥2

yTk sk
,

2
∥yk∥2

yTk sk
, otherwise

(1.6)

with

ηk = 1 + θk

(
∥yk∥2

yTk sk
−

yTk sk
∥sk∥2

)
+

yTk sk
∥sk∥2 , (1.7)

where the scaling parameter θk is determined by

θk =
∥sk∥2

yTk sk
, (1.8)

or

θk =
yTk sk
∥yk∥2 , (1.9)

and ξk > 0 is a parameter computed as

ξk =

{
1, if bk = 0,

−
ak
bk

, otherwise (1.10)

in which ak = αkgT
k dk and bk = −αk(gk − ∇f (xk + αkdk))Tdk.

Although ACGSSV is more efficient and more robust than the well-known conjugate gradient algorithms, such as
SCALCG [4], CG-DESCENT [5] and CONMIN [6], a part of its global convergence analysis is incorrect, due to a wrong
inequality and an incorrect reasoning used. In what follows, we first describe these errors that occurred in proving the
global convergence Theorem 4.2 in [2], and then make the necessary corrections. Under common assumptions, it is proven
that Algorithm ACGSSV converges linearly to the unique minimizer.

2. Errors in the convergence analysis of ACGSSV

In this section,we state thewrong inequality and the incorrect reasoning used in proving the global convergence Theorem
4.2 in [2]. To this end, we need the following basic assumptions [2]:
A1. The level set L0 = {x ∈ Rn

|f (x) ≤ f (x0)} is bounded, where x0 is an available initial point.
A2. The gradient function g(x) of f (x) is Lipschitz continuous in a neighborhood N of L0, i.e., there exists a constant L > 0
such that

∥g(x) − g(y)∥ ≤ L∥x − y∥, ∀x, y ∈ N .

Since {fk} is a monotonically decreasing sequence, it is clear that the sequence {xk} generated by Algorithm ACGSSV is
contained in L0. This fact together with the above assumptions implied that there exists a constant Γ such that

∥∇f (x)∥ ≤ Γ , ∀x ∈ L0. (2.1)

To present our results, we also need the following definition (see [3]).

Definition 2.1. A differentiable function f is said to be uniformly convex onN , if there exists a positive constantµ > 0 such
that

(∇f (x) − ∇f (y))T (x − y) ≥ µ∥x − y∥2, ∀x, y ∈ N . (2.2)
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