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a b s t r a c t

This paper is aimed to extend, the non-autonomous case, the results recently given in
the paper Casabán et al. (2016) for solving autonomous linear and quadratic random
matrix differential equations. With this goal, important deterministic results like the
Abel–Liouville–Jacobi’s formula, are extended to the random scenario using the so-
called Lp-random matrix calculus. In a first step, random time-dependent matrix linear
differential equations are studied and, in a second step, random non-autonomous Riccati
matrix differential equations are solved using the hamiltonian approach based on dealing
with the extended underlying linear system. Illustrative numerical examples are also
included.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the recent paper [1] linear and quadratic random autonomous differential equations were motivated and studied in
the Lp-random sense. In that paper, all the coefficients were assumed to be random matrices rather than matrix stochastic
processes, hence in [1] coefficients do not depend on time. Based on the well-known linear hamiltonian approach, (see [2,3]
for excellent references about Riccati differential equations and the hamiltonian approach), the solution of the initial value
problem for a general class of Riccati random quadratic matrix equations is obtained in terms of the blocks of the solution
stochastic process of the underlying random linearized problem.

In this paper, we address the solution in the Lp-random sense of the non-autonomous Riccati matrix differential initial
value problem (IVP)

W ′(t)+ W (t) A(t)+ D(t)W (t)+ W (t) B(t)W (t)− C(t) = 0, W (0) = W0, (1)

where the variable coefficient matrices A(t) ∈ Ln×n
p (Ω),D(t) ∈ Lm×m

p (Ω), B(t) ∈ Ln×m
p (Ω), C(t) ∈ Lm×n

p (Ω), the initial
condition W0 ∈ Lm×n

p (Ω) and the unknown W (t) ∈ Lm×n
p (Ω) are matrix stochastic processes whose size are specified in

the superindexes and defined in certain Lr×s
p (Ω) spaces, that will be specified later. It is important to underline that in (1),

the meaning of the derivativeW ′(t) is understood in the pth mean sense, that is, a kind of strong random convergence that
it will be introduced in Section 2. It is convenient to highlight that using the Lr×s

p (Ω)-random approach is not equivalent to
deal with the averaged deterministic problem based on taking the expectations in every entry of thematrices that define the
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differential equation (1). Evenmore, fromapractical point of view, it ismore realistic to consider the randomapproach rather
than the deterministic since when modelling input data of the Riccati equation (1) are usually fixed after measurements,
hence having errors. We point out that the content of this paper may be regarded as a continuation of [1,4,5]. Finally, we
highlight some recent and interesting contributions dealingwith scalar randomRiccati-type differential equations bymeans
of Lp(Ω)-random calculus or alternative techniques [6,7], for example.

The organization of this paper is as follows. Section 2 is devoted to extend some stochastic results presented in Section
2 of [1] and to introduce new ones as well. These new results are addressed to establish a random analogous of the
Abel–Liouville–Jacobi’s formula that will play a key role to deal with the non-autonomous random case. In Section 3 the
random non-autonomous matrix linear problem is treated, including the bilateral case. In Section 4 the random non-
autonomous Riccati matrix equation is solved based on the extended underlying linear problem, including a procedure for
the numerical solution inspired in the results of [4] that were obtained for the non-autonomous deterministic counterpart.
In Section 5 the theoretical results obtained throughout the paper are illustrated by means of several numerical examples.
Finally, conclusions are drawn in Section 6.

2. New results on Lp-randommatrix calculus

The aim of this section is to establish new results belonging the so called Lp(Ω)-random matrix calculus that will be
required later for solving both non-autonomous linear systems (see Section 3) and non-autonomous nonlinear random
Riccati-type matrix differential equations of the form (1) (see Section 4). This section can be viewed as continuation of the
contents introduced in [1, Sec.2]. For the sake of consistency, hereinafter we will keep the same notation introduced in [1].
For ease of presentation, it is convenient to remember that given a complete probability space, (Ω,F , P), Lm×n

p (Ω) denotes
the set of all real random matrices X = (xi,j)m×n such as xi,j : Ω −→ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n, are real random variables
(r.v.’s) satisfying thatxi,jp =


E

|xi,j|p

1/p
< +∞, p ≥ 1, (2)

where E [·] denotes the expectation operator. It can be proved that (Lm×n
p (Ω), ∥·∥p), where

∥X∥p =

m
i=1

n
j=1

xi,jp , E

|xi,j|p


< +∞, (3)

is a Banach space. Notice that no confusion is possible between the common notation used for the ∥·∥p in (2) and in (3)
because they act on scalar r.v.’s (denoted by lower case letters) and random matrices (denoted by capital case letters),
respectively. In the case that m = n = 1, both norms are the same and (L1×1

p (Ω) ≡ Lp(Ω), ∥·∥p) represents the Banach
space of real r.v.’s with finite absolute moments of order p about the origin, being p ≥ 1 fixed, [8]. In [9] a number of results
corresponding to p = 4 (fourth random calculus) and its relationship with p = 2 (mean square calculus) are established and
applied to solve scalar random differential equations. In [10] a scalar random Riccati differential equation whose nonlinear
coefficient is assumed to be an analytic stochastic process is solved using the Lp(Ω)-random scalar calculus.

Given T ⊂ R, a family of t-indexed r.v.’s, say {x(t) : t ∈ T }, is called a p-stochastic process (p-s.p.) if for each t ∈ T , the
r.v. x(t) ∈ Lp(Ω). This definition can be extended tomatrix s.p.’s X(t) = (xi,j(t))m×n of Lm×n

p (Ω), which are termed p-matrix
s.p.’s, if xi,j(t) ∈ Lp(Ω) for every 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The definitions of continuity, differentiability and integrability of p-matrix s.p.’s follow in a straightforwardly manner
using the ∥·∥p-norm introduced in (3). As a simple but illustrative example that will be invoked later when showing more
sophisticated examples in Section 5, we show how to prove the p-differentiability of a matrix s.p. of Ln×n

p (Ω).

Example 1. Let a be an absolutely continuous r.v. defined on the bounded interval (a1, a2), i.e., a1 ≤ a(ω) ≤ a2 for every
ω ∈ Ω , and let us denote by fa(a) the probability density function (p.d.f.) of the r.v. a. Let us define the following matrix
s.p.

H(t; a) =


h1,1(t; a) h1,2(t; a)
h2,1(t; a) h2,2(t; a)


=


exp(at) cosh(at)
sinh(at) exp(−at)


, t ∈ [0, T ].

On the one hand, by the definition of the randommatrix p-norm (see (3)) one gets

∥H(t; a)∥p =

2
i=1

2
j=1

hi,j(t; a)

p = ∥exp(at)∥p + ∥cosh(at)∥p + ∥sinh(at)∥p + ∥exp(−at)∥p .

On the other hand, if we denote

Mt,p := max{M i,j
t,p : 1 ≤ i, j ≤ 2}, whereM i,j

t,p := max
ω∈Ω

{(hi,j(t; a(ω)))p} < +∞.
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