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a b s t r a c t

We study a generalization of the classical piecewise linear approximation methods with
equally spaced breaks by considering the sampling sites as random variables. The new
methods aremotivated by the facts that real-world data collected fromwhat are perceived
to be equally spaced sites suffer from random errors due to measurement inaccuracies and
other known or unknown factors. We establish error estimates and convergence results
under practical assumptions about the distribution of the sampling sites.
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1. Introduction

Consider the knots sequence △n = {xk}nk=0with xk = k/n. Let x−1 := x0, xn+1 := xn, and set

Hk(x) :=


(x − xk−1)/(xk − xk−1), xk−1 < x ≤ xk,
(xk+1 − x)/(xk+1 − xk), xk ≤ x < xk+1,
0, otherwise.

These functions are called B-spline of order 2 for the knots sequence△n. Let f (x) be a function defined on [0, 1]. Its piecewise
linear approximant In(f ; x) with respect to △n is given by

In(f ; x) =

n
k=0

f (xk)Hk(x). (1)

One enjoys the piecewise linear approximation method for the following properties [1]:

1. It reproduces linear functions. This means that if f (x) is linear, then In(f ; x) = f (x).
2. It is variation diminishing. This means that if v(g) denotes the number of changes of sign in [0, 1] of a function g(x), then

v(In(f )) ≤ v(f ).
3. It is nearly optimal. This means that

dist(f , S2(△n)) ≤ ∥f − In(f )∥ ≤ 2 dist(f , S2(△n)),
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where ∥f − In(f )∥, S2(△n), and dist(f , S2(△n)) denote respectively the maximum norm of f − In(f ), the space of all
piecewise linear functions on [0, 1] with breaks at x1, . . . , xn−1, and the distance between f and S2(△n) with respect to
maximum norm.

Moreover, properties 1 and2 are the source of the shape preserving properties of the piecewise linear approximationmethod
which is commonly employed in CAGD [2–4].

To form the approximant In(f ; x), one needs to sample f at sites {xk}nk=0, and assembles them with ‘‘kits’’ Hk(x). The
sampling sites are (n + 1) equally spaced points in the interval [0, 1]. In many real world problems, data collected from
what are perceived to be equally spaced sites suffer from random errors due to signal delays, measurement inaccuracies,
and other known or unknown factors. It motivates us to introduce a generalization of the piecewise linear approximant for
which the sampling action takes place at scattered sites:

IAn (f ; x) =

n
k=0

f (xn,k)Hk(x), (2)

where A = ⟨xn,k⟩ is a lower triangular array. If we take A = ⟨k/n⟩ in (2), the approximant IAn (f ; x) is exactly the
classical piecewise linear approximant In(f ; x). In this paper we contemplate from the probabilistic perspective to study
this generalized version of the piecewise linear approximation methods. Specifically, we focus on the following problem:
Given f ∈ C([0, 1]) and ε > 0, draw (n+1) points xn,k(k = 0, 1, . . . , n) independently according to the normal distributions
Fk with mean k/n and variance σ 2, respectively, and estimate the probability

P

(xn,0, xn,1, . . . , xn,n) :

IAn (f ; x) − f (x)
 > ε


. (3)

This type of probabilistic estimate is similar to those in learning theory within the framework advocated by Cucker
& Smale [5,6], with the difference that the estimate in learning theory is obtained without a priori knowledge of the
probabilistic distributions the random variables xn,0, xn,1, . . . , xn,n obey. Moreover, under some assumptions about the
smoothness of approximated functions and the variance ε > 0, we provide the convergence order of IAn (f ; x) according
to the probability estimated.

2. Error estimates

Let xn,k(k = 0, 1, . . . , n) be randomvariables that obey the normal distributions Fk withmean E(xn,k) = k/n and variance
Var(xn,k) = σ 2. The following normal probability inequality is a standard result in probability theory. It can be found inmany
probability related textbooks (e.g. [7,8]).

Lemma 1. If xn,k are random variables that obey the normal distribution with mean k/n and variance σ 2, then

P
xn,k −

k
n

 ≥ t


≤


2
π

σ

t
e−

t2

2σ2 , t > 0. (4)

Let ω(f , δ) = sup|u−v|≤δ |f (u) − f (v)| denote the modulus of continuity of the function f . Then it is readily seen that

In(f ; x) − f (x)
 ≤ ω


f ,

1
n


. (5)

In view of this and by using Lemma 1 we are ready to establish the main result of the paper.

Theorem 2. Let ε > 0 and f ∈ C([0, 1]) be given. Suppose that ω

f , 1

n


< ε/4 and that xn,k(k = 0, 1, . . . , n) are

independently drawn according to the normal distributions Fk with mean k/n and variance σ 2. Then with αn =
1
2

1
nω

f , 1n

 , we

have the following probability estimate

P
IAn (f ; x) − f (x)

 > ε


≤ n

√
2σ

εαn
e
−


εαn√
2σ

2
. (6)
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