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a b s t r a c t

In this paper, a modified weak Galerkin method is proposed for the Stokes problem. The
numerical scheme is based on a novel variational form of the Stokes problem. The degree
of freedoms in the modified weak Galerkin method is less than that in the original weak
Galerkinmethod,while the accuracy stays the same. In this paper, the optimal convergence
orders are given and some numerical experiments are presented to verify the theory.
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1. Introduction

In this paper, we consider the Stokes problem

−1u + ∇p = f, inΩ, (1.1)
∇ · u = 0, inΩ, (1.2)

u = g, on ∂Ω, (1.3)

whereΩ is a polygonal or polyhedral domain in Rd(d = 2, 3). The right-hand side f ∈ [L2(Ω)]d is the source term, and g is
the boundary condition satisfying

∂Ω

g · n = 0,

where n is the unit outward normal vector of ∂Ω . Without loss of generality, in this paper we consider the homogeneous
Dirichlet boundary condition, i.e. we assume g = 0. In the past several decades, many efforts have been dedicated to the
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numerical simulation of the Stokes problem. A variety of numericalmethods, such as finite differencemethod, finite element
method [1], and discontinuous Galerkin method [2], have been applied to the Stokes problem. The details of classical finite
element method for the Stokes problem are introduced in [3] and the references therein.

Recently, a new type of numerical method, called the weak Galerkin method, has been developed for partial differential
equations [4]. The main idea of weak Galerkin method is to use totally discontinuous piecewise polynomials as basis
functions, and use specifically defined weak derivatives instead of classical derivative operators in the numerical scheme.
The weak Galerkin method is efficient for many types of partial differential equations, such as second order elliptic
equation [5,4], biharmonic equation [6,7], Brinkman equation [8,9], and Maxwell equation [10], etc. Some numerical
techniques, such as posterior estimate [11], have also been applied to the weak Galerkin method.

For the Stokes problem (1.1)–(1.3), the classical variational form is to find u ∈ [H1
0 (Ω)]

d and p ∈ L20(Ω), such that

(∇u,∇v)− (∇ · v, p) = (f, v), ∀v ∈ [H1
0 (Ω)]

d, (1.4)

(∇ · u, q) = 0, ∀q ∈ L20(Ω). (1.5)

The variational problem (1.4)–(1.5) can be solved by the conforming finite element method, and many kinds of elements
satisfying stable condition are proposed [3]. The corresponding weak Galerkin method [12,13] are also developed for the
variational problem (1.4)–(1.5). However, there is another variational form as follows. Find u ∈ [H1

0 (Ω)]
d and p ∈ L20(Ω) on

∂Ω , and

(∇u,∇v)+ ⟨∇p, v⟩ = (f, v), ∀v ∈ [H1
0 (Ω)]

d, (1.6)

⟨∇q,u⟩ = 0, ∀q ∈ L20(Ω), (1.7)

where∇p and∇q are functionals defined by distributions. Due to its flexibility, the weak Galerkin method can be applied to
variational problem (1.6)–(1.7), which is unusual for the conforming finite element method. The reason that we study aWG
scheme based on the gradient–gradient variational form (1.6)–(1.7) is mainly coming from that this scheme is suit for the
mixed form of Darcy which would present a better approximation for this case. In fact, for the complex porous media with
interface conditions, people could use Stokes–Darcy interface model to describe this problem. In order to provide a more
efficient weak Galerkin scheme, we prefer to utilize this gradient–gradient weak form to approximate the model. To unify
the weak form of this interface problem, we present the corresponding numerical analysis results of this gradient–gradient
form for Stokes problem.

For the Stokes problem, the advantages of weak Galerkin method are two folds. One is that the weak Galerkin method
is valid on regular polytopal meshes. The other one is that the weak Galerkin method is of high flexibility. Most types of
elements satisfy the inf–sup condition naturally in theweakGalerkinmethod, andwedonot need to construct finite element
spaces specifically. The main problem of the weak Galerkin method is the calculation cost. Other than the freedoms on
each element, the weak Galerkin method introduces freedoms on each edge/face in the partition, so the degree of freedom
is much more higher than the classical finite element method. To this end, a modified weak Galerkin (MWG) method is
proposed [14,15]. Themain idea is to use the average of u0 to replace ub, thus we can reduce the degree of freedomswithout
loss of accuracy.

In this paper, we shall apply the modified technique to the weak Galerkin method introduced in [16]. We shall prove
that by using the modified technique, the degree of freedoms decreases while the convergence rates stay the same. The
rest of the paper is structured as follows. In Section 2, we shall propose the modified weak Galerkin scheme. Section 3 is
devoted to the stability analysis. In Section 4, we give the error equation, and the error estimates are proved in Section 5.
Some numerical experiments are presented in Section 6.

2. Modified weak Galerkin method

First, we introduce some preliminaries and notations. In this paper, we use the notations of standard Sobolev space. For
any domain K and real number s, denote by ∥ · ∥s,K and (·, ·)s,K the norm and inner-product in Hs(K) space. When s = 2 and
K = Ω , we shall drop the subscript. When K is an edge/face, we also use ⟨·, ·⟩s,K to represent the inner-product.

Suppose Th is a polytopal partition of Ω satisfying the regular assumptions verified in [17]. For each element T ∈ Th,
denote by hT the diameter of T , and h = maxT∈Th is the mesh size of Th. We also use Pk(T ) to represent the space of
polynomials on element T whose degree is no more than k. Denote by Eh the union of all edges/faces in Th, and E0

h the union
of all interior edges/faces in Th. We also use Pk(e) to represent the space of polynomials on edge/face e whose degree is no
more than k. In this paper, C represents a generic constant independent of h.

In [16], we defined the weak Galerkin finite element spaces as follows:

Vh = {v = {v0, vb}, v0 ∈ [Pk(T )]d, vb ∈ [Pk(e)]d,∀T ∈ Th, e ∈ Eh, vb = 0 on ∂Ω},

and

Wh =


q = {q0, qb}, q0 ∈ Pk−1(T ), qb ∈ Pk(e),∀T ∈ Th, e ∈ Eh,


Ω

q0 = 0

.
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