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is a special case of (1) with @« = § = 1 and v > —1. This problem has, for m > 1, the
solution

1—m 1/(1—m)

_ 1+v 1-m
y(t)[—l—i—’yt +0b
Observe that, for m > 1, the solution blows-up in finite time.
When o = 1, 8 = 0 and v = 0, the problem (1) with an equality instead of inequality is
equivalent to the Bernoulli differential problem
{y’(t)+y(t)—ym(t),t>0, @
Y () le=o = b.

The solution of (2) is given by

y(t)=[1+ (" —1)exp(m—1) t]l/(km) :

Clearly y(t) blows up in the finite time

c= ln(lfbl_m),m,b>1.

In case @ = (3, 0 < o < 1, and Riemann-Liouville fractional derivative in (1) we obtain the
problem with only one fractional derivative

Iy (t) |i=0 = b.

Problem (3) has been considered by Laskri and Tatar [23]. It was shown that if 7 > —a and
1<m< %, then, Problem (3) does not admit global nontrivial solutions when b > 0.
Here, we would like to investigate the case where a lower order fractional derivative is present
in the equation (or inequality). It is known that for hyperbolic equations, say the wave equa-
tion with an internal frictional damping represented by the first derivative (i.e. « =2, 3 =1
also known as the Telegraph equation), this damping has a dissipation effect. It will compete
with the polynomial source and may take it over this blowing-up term under certain circum-
stances. Moreover, it has been shown for the telegraph problem that solutions approach the
solution of the same problem without the highest derivative when ¢ goes to infinity (that is
the parabolic equation). This result has been generalized to the fractional derivative case
in [7] and in [32].

For our problem (1), we would like to see how much influential CDg y will be. In particular,
how the range of values m ensuring non-existence would be affected. We reached the conclu-
sion that here also it is the lower order derivative (i.e. ) which determines this range just
like the parabolic part in the hyperbolic problem.

The rest of the paper is divided into three sections. In the next section, we present some
definitions, notations, and lemmas which will be needed later in our proof. In Section 3, we
present the test function and prove some properties for this function. Section 4 is devoted
to the nonexistence result. In Section 5, we illustrate our findings by Numerical examples.

2 Preliminaries

In this section we present some definitions, lemmas, properties and notation which will be
used in our result later.
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