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In this paper, we prove the uniqueness and generic regularity of the energy 
conservative solution for a system of wave equations modeling nematic liquid crystal.
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r é s u m é

Dans cet article, nous prouvons l’unicité et la régularité générique de la solution 
de conservation d’énergie pour un système d’équations d’onde modélisant le cristal 
liquide nématique.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we study the uniqueness and generic regularity for energy conservative Hölder continuous 
solution to the system of wave equations

∂ttni − ∂x(c2(n1)∂xni) =
(
−|nt|2 + (2c2 − λi)|nx|2

)
ni, i = 1, 2, 3, (1.1)

on n = (n1, n2, n3) with

|n| = 1. (1.2)

Here, the time t and space variables x belong to R+ and R, respectively. The constants

λ1 = γ > 0 and λ2 = λ3 = α > 0.
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The (positive) wave speed c depends on n1 with

c2(n1) = α + (γ − α)n2
1. (1.3)

The initial data are

ni|t=0 = ni0 ∈ H1, (ni)t|t=0 = ni1 ∈ L2, i = 1, 2, 3. (1.4)

We briefly introduce the origin of system (1.1) from nematic liquid crystal. Liquid crystal is often viewed 
as an intermediate state between liquid and solid. It possesses none or partial positional order but displays 
an orientational order at the same time. For the nematic phase, the molecules float around as in a liquid 
phase, but have the tendency of aligning along a preferred direction due to their orientation. The mean 
orientation of the long molecules in a nematic liquid crystal is described by a director field of unit vectors, 
n ∈ S

2, the unit sphere. Associated with the director field n, there is the well-known Oseen–Franck potential 
energy density W given by

W (n,∇n) = 1
2α(∇ · n)2 + 1

2β (n · ∇ × n)2 + 1
2γ |n × (∇× n)|2 . (1.5)

The positive constants α, β, and γ are elastic constants of the liquid crystal, corresponding to splay, twist, 
and bend, respectively.

There are many studies on the constrained elliptic system of equations for n derived through variational 
principles from the potential (1.5), and on the parabolic flow associated with it, see [1–6] and references 
therein.

In the regime in which inertia effects dominate viscosity, the propagation of the orientation waves in the 
director field may then be modeled by the least action principle ([7,8])

δ

δn

ˆ

R+

ˆ

R3

{1
2∂tn · ∂tn −W (n,∇n)

}
dx dt = 0, n · n = 1. (1.6)

When the space dimension is one (1-d), i.e. x ∈ R, and when α = β, system (1.6) exactly gives (1.1), on 
which we focus in this paper. There is a simpler case when n = (cosu(x, t), sin u(x, t), 0) (planar deforma-
tion). In this case, the function u satisfies

utt − c(u)(c(u)ux)x = 0, (1.7)

with c2(u) = γ cos2 u + α sin2 u. See [9] and [10] for the derivations of (1.1) and (1.7).
Because of the strong nonlinearity, the solution for (1.6) fails to be Lipschitz continuous even for 1-d 

solution with C∞ initial data, such as for solutions of (1.1) and (1.7). See [11] for an example with finite 
time gradient blowup. More precisely, the 1-d solution in general includes cusp singularity, which means 
that solution is only Hölder continuous, due to the energy concentration. This causes the following major 
difficulties in studying the existence, uniqueness and Lipschitz continuous dependence of global weak solution 
respectively:

• Classical solution in general does not exist. One has to study weak solutions.
• Solution in general is not unique. To select a unique solution, one needs a physical admissible condition, 

such as the energy conservation used in this paper. However, the energy conservation laws are only in 
the weak form.
Another type of solutions are called dissipative solutions. See existence of dissipative solution for (1.7)
with monotonic wave speed c(·) in [12–14].
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