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We prove interior regularity for W 2,2 isometric immersions of surfaces endowed with 
a smooth Riemannian metric of positive Gauss curvature.
We then derive the Γ-limit of three dimensional nonlinear shells with inhomogeneous 
energy density, in the bending energy regime. This derivation is incomplete in that 
it requires an additional technical hypothesis.
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r é s u m é

Nous prouvons un résultat de régularité intérieure pour des immersions isometriques 
W 2,2 de surfaces munies d’une metrique riemannienne reguliere de courbure de 
Gauss positive. Nous derivons la Γ-limite de coques en flexion non linéaires et non 
homogènes. Ce résultat est incomplet puisqu’il nécessite une hypothèse (technique) 
additionnelle.

© 2018 Published by Elsevier Masson SAS.

1. Introduction

For C2 isometric immersions u of a two-dimensional Riemannian manifold with positive Gauss curvature 
into R3, there is a link between the regularity of the metric and the regularity of u; in particular, if the 
metric is smooth then so is u. Without a priori assumptions on the regularity of u this link is broken.

In the present paper, we show that square integrability of the second fundamental form of u is sufficient 
for the link to persist. In particular, if the metric is smooth, then u is smooth in the interior, provided that 
initially it belongs to the Sobolev space W 2,2.
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Our regularity results for metrics with positive Gauss curvature rely upon earlier work by Šverák on the 
Monge–Ampère equation. Due to the low regularity, the passage from the scalar problem to the vectorial 
problem addressed here is not trivial.

Relaxing C2 regularity to regularity on the Sobolev scale is important for variational problems: the W 2,2

isometric immersions studied here arise naturally in thin film elasticity. In the present paper, we use this 
regularity result to derive homogenized bending models for convex shells from three dimensional nonlinear 
elasticity.

Regarding shells theories in elasticity, we refer to [8] for an overview of the derivation via formal asymp-
totic expansions. In the case of linearly elastic shells, these models can also be justified rigorously.

More recently, nonlinear models for rods, curved rods, plates and shells have been derived rigorously 
by means of Γ-convergence, starting from three dimensional nonlinear elasticity. The first results in that 
direction can be found in [1,18,19]. The nonlinear bending theory for plates was derived in [10], and the 
corresponding theory for shells in [9].

In the second part of this article we derive a homogenized nonlinear bending theory of shells, by simulta-
neous homogenization and dimension reduction. This generalizes the results from [9]. Our starting point is 
the energy functional of three dimensional nonlinear elasticity: We consider a reference configuration which 
is a shell Sh ⊂ R

3 of thickness h > 0 around an embedded surface S ⊂ R
3. The elastic energy stored in the 

deformed configuration determined by a deformation u ∈ W 1,2(Sh, R3) is given by

1
h2 |Sh|

∫
Sh

Wε(x,∇u(x)) dx. (1)

The function Wε is a stored energy function that oscillates periodically in x, with some period ε � 1. We 
are interested in the effective behavior of the functionals (1) when both the thickness h and the period ε
are small: we consider the asymptotic behavior of (1) when h and ε tend to zero simultaneously.

Such a combination of dimension reduction and homogenization was studied, e.g., in [4]. More recently, 
homogenized nonlinear plate theories in the von Kármán energy regime and in the bending regime were 
studied in [24] and in [15,31]. In these cases one does not obtain an infinite-cell homogenization formula as 
in the membrane case studied in [4]. This is because for small strains the energy is essentially convex, so 
one can use two-scale convergence techniques.

The derivation of a homogenized theory of shells in the von Kármán energy regime was carried out in 
[16]. Different models were obtained in the regime h � ε. For generic shells, the models for the situations 
ε2 � h � ε have been derived. For convex shells, the whole regime h � ε is now understood.

The geometric framework developed in [16] will be used in the present paper as well. Here we are interested 
in the analogous theory for the bending energy regime. We restrict ourselves to convex shells. Our main 
result in this direction is Theorem 3.2. The derivation of the lower bound is quite natural. However, as 
usual, we can prove sharpness of the lower bound only for regular limiting deformations. We are not able to 
close this regularity gap. However, our regularity result Theorem 2.1 allows us to narrow the gap: using it, 
we can construct the required recovery sequence starting from a limiting deformation which is not in W 3,∞, 
but merely in W 2,∞. In addition, Theorem 2.1 confirms the intuition that all finite energy deformations of 
a convex shell preserve convexity.

2. Regularity of intrinsically convex W 2,2 surfaces

The purpose of this chapter is to prove the following result:
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