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We present two range characterizations for the attenuated geodesic X-ray transform 
defined on pairs of functions and 1-forms on simple surfaces. Such characterizations 
are based on first isolating the range over sums of functions and 1-forms, then 
separating each sub-range in two ways, first by implicit conditions, second by 
deriving new inversion formulas for sums of functions and 1-forms.

© 2017 Published by Elsevier Masson SAS.

r é s u m é

Nous présentons deux caractérisations de l’image de la transformée Rayons X 
géodésique atténuée, définie pour des sommes de fonctions et 1-formes, sur des 
surfaces à bord dites « simples ». Ces caractérisations sont obtenues en isolant 
d’abord l’image de l’opérateur aux sommes de fonctions et 1-formes, puis en 
caractérisant les restrictions aux fonctions ou 1-formes de deux manières, d’une 
part via des conditions implicites, d’autre part en dérivant des nouvelles formules 
de reconstruction pour les fonctions et 1-formes à partir de leurs transformées 
Rayons X.
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1. Introduction

Let (M, g) be a smooth compact oriented Riemannian surface with boundary ∂M , with unit tangent 
bundle SM := {(x, v) ∈ TM : |v|g(x) = 1} and inward/outward boundaries

∂±SM = {(x, v) ∈ SM : x ∈ ∂M, ±〈v, νx〉g(x) ≥ 0},

where νx is the unit inward normal at x ∈ ∂M . Denote ϕt : SM → SM the geodesic flow, written as 
ϕt(x, v) = (γx,v(t), γ̇x,v(t)) and defined for −τ(x, −v) ≤ t ≤ τ(x, v), where τ(x, v) is the first exit time of 
the geodesic starting at (x, v). Throughout the paper, we assume that (M, g) is simple, meaning that the 
boundary is strictly convex and that any two points on the boundary are joined by a unique minimizing 
geodesic. In particular, this implies that (M, g) is simply connected (see, e.g. [20, Proposition 2.4]) and 
that τ(x, v) is bounded on SM (i.e., (M, g) is non-trapping). For a ∈ C∞(M, C), the object of study is the 
attenuated geodesic ray transform Ia : C∞(SM, C) → C∞(∂+SM, C) defined for f ∈ C∞(SM, C) as

Iaf(x, v) =
τ(x,v)∫
0

f(ϕt(x, v)) exp

⎛⎝ t∫
0

a(γx,v(s)) ds

⎞⎠ dt, (x, v) ∈ ∂+SM, (1)

where the definition follows the convention in [29].3 The present article aims at providing range character-
izations for this transform over pairs of functions and 1-forms, that is, when the integrand f in (1) takes 
the form f(x, v) = f0(x) + αx(v) for f0 a function and α a 1-form. As the transform above models some 
medical imaging modalities such as Computerized Tomography and Ultrasound Doppler Tomography in 
media with variable refractive index, range characterizations are useful to project noisy data onto the range 
of a given measurement operator before inverting for the unknown (f0 or α here). In media with constant 
refractive index, modeled by the Euclidean metric in the parallel geometry, the problem has been extensively 
studied [18,16,2,6,34]. In this setting, a range characterization has been obtained in [17], though obtaining 
such a characterization in the form of Helgason–Ludwig type consistency conditions, a form enjoyed by 
the unattenuated transform which is most amenable to practical data denoising, remains an open problem. 
Recently, range characterizations for the attenuated transform on convex Euclidean domains were provided 
in terms of Hilbert transforms with respect to A-analytic function theory à la Bukhgeim, treating the case of 
functions [28], vector fields [27] and two-tensors [26], though such results are limited to Euclidean settings, 
as the theory of A-analytic functions has not yet been developed on non-Euclidean domains.

In the case of manifolds with no symmetries, parallel geometry does not exist and one must work with 
fan-beam coordinates. The scalar case has been studied in [29,14] in the geodesic case, and in [11] in the 
Euclidean, fan-beam case, mainly focused on injectivity, stability and inversion procedures.

On to range characterizations, the first one in terms of boundary operators was provided by Pestov and 
Uhlmann in [23], later generalized to the case of transport with unitary connection, with further applications 
to the range characterization of the unattenuated transform over higher-order tensors [19]. Recently in [15], 
the range characterization in [23] was proved by the second author to be a generalization of the classical 
moment conditions in the Euclidean setting.

In the approach coming from [23], there exists a boundary operator P which only depends on the 
scattering relation and the fiberwise Hilbert transform, and which characterizes the unattenuated transform 
over functions and 1-forms. Further splitting of P into the sum P+ + P− allows to separate ranges over 
functions and 1-forms. A major challenge in the attenuated case is that, despite the fact that a similar 

3 In the applied literature, the attenuation term inside the integrand may take the form exp
(
−
∫ τ(x,v)
t

a(γx,v(s)) ds
)

instead. 
Both transforms obtained differ by a multiplicative factor exp(I0a) and thus contain the same information provided the attenuation 
a is known.
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