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We present qualitative and quantitative homogenization results for pathwise 
Hamilton–Jacobi equations with “rough” multiplicative driving signals. When there 
is only one such signal and the Hamiltonian is convex, we show that the equation, 
as well as equations with smooth approximating paths, homogenize. In the multi-
signal setting, we demonstrate that blow-up or homogenization may take place. The 
paper also includes a new well-posedness result, which gives explicit estimates for 
the continuity of the solution map and the equicontinuity of solutions in the spatial 
variable.
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r é s u m é

Nous présentons des résultats qualitatifs et quantitatifs d’homogénéisation pour des 
équations de Hamilton–Jacobi avec des termes de forçage multiplicatifs irréguliers. 
Dans le cas d’un seul forçage et d’un Hamiltonien convexe, nous montrons que 
l’équation elle-même, et les équations qui l’approchent pour des forçages réguliers, 
s’homogénéisent. Dans le cas de plusieurs forçages, nous prouvons que l’explosion 
ou l’homogénéisation sont possibles. L’article contient aussi un nouveau résultat 
sur le caractère bien posé de l’équation, qui donne des estimées explicites sur la 
continuité de l’application qui aux termes de forçages et à la condition initiale 
associe la solution, ainsi que sur l’équicontinuité des solutions par rapport à la 
variable d’espace.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

We study the asymptotic behavior, as ε → 0, of pathwise Hamilton–Jacobi equations driven by a “rough” 
continuous signal W : [0, ∞) → R

M ,

duε +
M∑
i=1

Hi(Duε, x/ε) · dW i = 0 in R
d × (0,∞), uε(·, 0) = u0 on R

d. (1.1)
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The initial condition u0 belongs to BUC(Rd), the space of bounded, uniformly continuous functions on Rd. 
We expect homogenization to occur if the dependence of Hi in the spatial variable y = x/ε has some sort 
of self-averaging property. In this paper, this will be periodicity or stationary ergodicity.

The interpretation of (1.1) is determined by the regularity of W . For example, if W is differentiable, 
then dW and duε represent respectively the time derivatives of uε and W , which we denote by uε

t = uε
t(x, t)

and Ẇ = Ẇt = Ẇ (t). In this case, uε is defined in the usual Crandall–Lions viscosity sense, the theory for 
which is outlined in the User’s Guide by Crandall, Ishii, and Lions [8]. If W has bounded variation, then 
(1.1) falls within the scope of equations with L1-time dependence considered by Lions and Perthame [17]
and Ishii [13]. In either setting, the symbol · stands for multiplication.

Here, we allow W to be any continuous signal. The typical examples are sample paths of continuous 
stochastic processes, such as Brownian motion, in which case W is nowhere differentiable and has unbounded 
variation on every interval. For such W , the symbol · should be thought of as the Stratonovich differential.

The theory for (1.1) in this generality was developed by Lions and Souganidis in [19], [20], [21], and [22], 
and is discussed in more detail in the forthcoming book [23]. Proving well-posedness is more challenging 
than in the classical viscosity setting, especially for spatially dependent Hi. In general, strong regularity is 
required for the Hamiltonians, and (1.1) is only well-posed for W in certain Hölder spaces.

In the single path case M = 1, if the Hamiltonian is uniformly convex, one can weaken the regularity 
assumptions and prove well-posedness for any continuous W . This is discussed by Lions and Souganidis in a 
forthcoming work [18], and a specific example is considered by Friz, Gassiat, Lions, and Souganidis in [11].

We briefly outline the results proved in this paper, giving the precise statements later. The various 
assumptions, including the homogenization rate assumption (3.8) that we reference below, are listed in 
Section 3.

We first study the single path setting,

duε + H(Duε, x/ε) · dW = 0 in R
d × (0,∞), uε(·, 0) = u0 on R

d. (1.2)

Following [18], we prove the following new well-posedness result.

Theorem 1.1. Assume that H is smooth, uniformly convex, and, for some q′ > 1, positively homogenous 
of degree q′. Then, for all ε > 0, u0 ∈ BUC(Rd), and W ∈ C([0, ∞), R), (1.2) admits a unique pathwise 
viscosity solution in the sense of Lions and Souganidis. Moreover, the solution operator for (1.2) is uniformly 
continuous in W , and the modulus of continuity for uε(·, t) depends only on the growth of H.

Using Theorem 1.1, we prove that, as ε → 0, uε converges to the unique solution of a homogenized 
equation of the form

du + H(Du) · dW = 0 in R
d × (0,∞), u(·, 0) = u0 on R

d. (1.3)

Theorem 1.2. In addition to the hypotheses of Theorem 1.1, assume (3.8). Then there exists H : Rd → R

such that, for all u0 ∈ BUC(Rd) and W ∈ C([0, ∞), R), the solution uε of (1.2) converges locally uniformly, 
as ε → 0, to the solution u of (1.3). Moreover, the convergence is uniform over all u0 with uniformly bounded 
Lipschitz constant.

For more general Hamiltonians, we replace W with a smooth signal W ε that converges locally uniformly, 
as ε → 0, to W , and study the initial value problem

uε
t + H(Duε, x/ε)Ẇ ε

t = 0 in R
d × (0,∞), uε(·, 0) = u0 on R

d. (1.4)

By imposing quantitative control on the increasing roughness of W ε for small ε, we are able to prove the 
following:
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