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Abstract

The discrete Klein-Gordon equation on a two-dimensional square lattice satisfies
an �1 �→ �∞ dispersive bound with polynomial decay rate |t|−3/4. We determine
the shape of the light cone for any choice of the mass parameter and relative
propagation speeds along the two coordinate axes. Fundamental solutions ex-
perience the least dispersion along four lines interior to the light cone rather
than along its boundary, and decay exponentially to arbitrary order outside the
light cone. The overall geometry of the propagation pattern and its associated
dispersive bounds are independent of the particular choice of parameters. In
particular there is no bifurcation of the number or type of caustics that are
present. The dispersive bounds imply global well-posedness for small solutions
of a nonlinear discrete Klein-Gordon equation.

The discrete Klein-Gordon equation is a classical analogue of the quantum
harmonic lattice. In the quantum setting, commutators of time-shifted observ-
ables experience the same decay rates as the corresponding Klein-Gordon solu-
tions, which depend in turn on the relative location of the observables’ support
sets.

1. Introduction

The wave equation utt −Δu = 0 on R
2+1 is explicitly solved via Poisson’s

formula, in which initial data u(x, 0) = g(x), ut(x, 0) = h(x) determines the
unique solution

u(x, t) =
sign(t)

2π

∫
|y−x|<|t|

h(y) + 1
t (g(y) +∇g(y) · (y − x))√

t2 − |y − x|2 dy
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