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We consider the numerical approximation of a time-fractional cable equation involving two 
Riemann–Liouville fractional derivatives. We investigate a semidiscrete scheme based on 
the lumped mass Galerkin finite element method (FEM), using piecewise linear functions. 
We establish optimal error estimates for smooth and middly smooth initial data, i.e., 
v ∈ Hq(�) ∩ H1

0(�), q = 1, 2. For nonsmooth initial data, i.e., v ∈ L2(�), the optimal 
L2(�)-norm error estimate requires an additional assumption on mesh, which is known 
to be satisfied for symmetric meshes. A quasi-optimal L∞(�)-norm error estimate is also 
obtained. Further, we analyze two fully discrete schemes using convolution quadrature in 
time based on the backward Euler and the second-order backward difference methods, 
and derive error estimates for smooth and nonsmooth data. Finally, we present several 
numerical examples to confirm our theoretical results.

© 2018 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

Let � be a bounded convex polygonal domain in R2 with a boundary ∂� and T > 0 be a fixed value. Let v be a given 
function defined on �. We consider the initial boundary-value problem for the time-fractional evolution equation

ut(x, t) = −γ ∂
1−α1
t u(x, t) + ∂

1−α2
t �u(x, t) in � × (0, T ], (1.1a)

with the homogeneous Dirichlet boundary condition

u(x, t) = 0 on ∂� × (0, T ], (1.1b)

and the initial condition

u(x,0) = v(x) in �, (1.1c)

where 0 < α1 < 1, 0 < α2 < 1 and γ > 0 are constants, ut is the partial derivative of u with respect to time, and ∂1−α
t :=

R D1−α is the Riemann–Liouville fractional derivative in time defined for 0 < α < 1 by:

∂1−α
t ϕ(t) := d

dt

t∫
0

ωα(t − s)ϕ(s)ds with ωα(t) := tα−1

	(α)
, (1.2)

where 	(·) is the Gamma function.
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In recent years time-fractional evolution equations received considerable attention from both practical and theoretical 
points of view due to their various applications. Fractional models have shown great efficiency in describing anomalous dif-
fusion observed in many physical situations, see [9], [10] and [25]. One particular motivating example is the fractional cable 
equation which is a generalization of the classical cable equation obtained by taking into account the anomalous diffusion 
in the movement of the ions in neuronal system. In [17], Langlands et al. derived such an equation as a macroscopic model 
for electrodiffusion of ions in nerve cells, when molecular diffusion is anomalous subdiffusion due to binding, crowding or 
trapping. They also investigated the equation for modeling the anomalous diffusion in spiny neuronal dendrites [11].

Recently, several numerical studies have been devoted to the approximation of the fractional cable equation. In [18], Lin 
et al. proposed a scheme based on a finite difference approach in time and a spectral method in space. A detailed error 
analysis is presented and some numerical examples are provided to verify the theoretical results. Bhrawy and Zaky [2]
considered an accurate spectral collocation algorithm for solving nonlinear fractional cable equations in one- and two-
dimensional cases. Zhuang et al. [29] discussed a Galerkin finite element approximation for one-dimensional fractional 
cable equation with first-order accuracy in time. Hu and Zhang [12] constructed implicit compact finite difference schemes 
for the approximation of the fractional cable equation. In [26], Quintana-Murillo and Yuste proposed an explicit numerical 
method for the fractional cable equation using the Grunwald–Letnikov formula for the temporal Riemann–Liouville deriva-
tive. In the recent paper [28], a discontinuous Galerkin finite element method was investigated. In all these studies, error 
estimates are obtained assuming high regularity on the exact solution, which is not practically the case. Most recently, Zhu 
et al. [30] applied the standard Galerkin FEM to approximate the solution of (1.1), and derived optimal error estimates with 
respect to the solution smoothness, expressed through the initial data v . They also established optimal error bounds for the 
inhomogeneous problem.

When γ = 0, the model (1.1a) reduces to the time-fractional subdiffusion equation

ut(x, t) − ∂
1−α2
t �u(x, t) = 0, (1.3)

for which numerical schemes with optimal (with respect to the regularity of problem data) error estimates are available. 
In [23], McLean and Thomée established the first optimal L2(�)-error estimates for the Galerkin FE solution of (1.3) with 
respect to the regularity of initial data. More precisely, for t ∈ (0, T ], convergence rates of order tα(δ−2)/2h2 (h denoting 
the maximum diameter of the spatial mesh elements) were proved assuming that the initial data u0 ∈ Ḣδ(�) for δ =
0, 2 (see, Section 2 for the definition of these spaces). The proof was based on some refined estimates of the Laplace 
transform in time for the error. The estimate extends results obtained for the standard parabolic problem, i.e., α = 1, which 
has been thoroughly studied, see [27]. In [24], based on a similar approach, the authors derived O (t−α(2−δ)/2h2| ln h|2)
convergence rates in the stronger L∞(�)-norm. Recently, a delicate energy analysis has been developed in [15] to obtain 
similar estimates. In recent papers [13,14], Jin et al. considered a subdiffusion model involving a Caputo fractional derivative 
in time. They established a priori error estimates for a semidiscrete FE scheme for the homogeneous problem in [13]. Fully 
discrete schemes based on convolution quadrature in time were derived and analyzed in [14] for problems with smooth 
and nonsmooth data.

The goal of this paper is to develop an error analysis with optimal (with respect to the regularity of problem data) 
estimates for the lumped mass Galerkin FEM for problem (1.1), using piecewise linear functions. An important feature of 
the lumped mass method is that when representing the discrete solution in the nodal basis functions, the resulting mass 
matrix is diagonal, which enhances the computation procedure. Our analysis is based on a comparison of the Galerkin FE 
solution with the lumped mass FE solution and exploiting Laplace transforms tool with semigroup type properties of the 
FE solution operator. The idea of comparing the two solutions has been used in [3] and [4] for the approximation of the 
standard parabolic problem by the lumped mass FE method and the FVE method, respectively, leading to an improvement 
of earlier results [5]. Recently in [16], a unified finite volume element error analysis has been presented for a large class of 
time-fractional evolution problems.

Our second objective is to analyze two fully discrete schemes for the semidiscrete FE problem based on convolution 
quadrature in time generated by the backward Euler and the second-order backward difference methods. Error estimates 
with respect to the data regularity are provided in Theorems 5.1 and 5.2.

The rest of the paper is organized as follows. In the next section, we present the solution theory of the mathematical 
model (1.1) and derive properties of the solution operator, which will play an important role in our subsequent error 
analysis. In Section 3, we derive smooth and nonsmooth data error estimates for the standard Galerkin method, which 
will be used in the sequel. In Section 4, we describe the semidiscrete lumped mass scheme, recall some properties, and 
establish error estimates for smooth and nonsmooth initial data v ∈ Ḣq , q = 0, 1, 2 in Subsections 4.1 and 4.2. For q = 0, i.e., 
v ∈ L2(�), we show an optimal error bound under an additional assumption on the mesh. Superconvergence result is proved 
in Subsection 4.3 and as a consequence, a quasi-optimal error estimate is established in the L∞(�)-norm. In Section 5, two 
fully discrete schemes based on convolution quadrature approximation of the fractional derivative are presented and error 
estimates are established. Finally, in Section 6, we conduct numerical experiments to validate our theoretical results.

Throughout the paper, c denotes a generic positive constant that may depend on α1, α2 and γ , but are independent of 
the spatial mesh element size h.
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