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In this paper, we investigate a two grid discretization scheme for semilinear parabolic 
integro-differential equations by expanded mixed finite element methods. The lowest 
order Raviart–Thomas mixed finite element method and backward Euler method are used 
for spatial and temporal discretization respectively. Firstly, expanded mixed Ritz–Volterra 
projection is defined and the related a priori error estimates are proved. Secondly, a 
superconvergence property of the pressure variable for the fully discretized scheme is 
obtained. Thirdly, a two-grid scheme is presented to deal with the nonlinear part of the 
equation and a rigorous convergence analysis is given. It is shown that when the two mesh 
sizes satisfy h = H2, the two grid method achieves the same convergence property as the 
expanded mixed finite element method. Finally, a numerical experiment is implemented to 
verify theoretical results of the two grid method.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following semi-linear parabolic integro-differential equations

yt − div(A(t)∇ y) +
t∫

0

div(B(t, s)∇ y(s))ds = f (y), x ∈ �, t ∈ J , (1.1)

y(x, t) = 0, x ∈ ∂�, t ∈ J , (1.2)

y(x,0) = y0(x), x ∈ �, (1.3)

where � ⊂ R2 is a convex polygonal domain with the boundary ∂�, J = (0, T ], f (y) = f (y, x, t) is a given real-valued 
function on �. We assume that the coefficient matrix A(t) = A(x, t) = (aij(x, t))2×2 ∈ W 1,∞(�̄; R2×2) is a symmetric and 
positive definite 2 × 2-matrix, and there exist constants a1, a2 > 0 satisfying for any vector X ∈ R2, a1‖X‖2

R2 ≤ Xt AX ≤
a2‖X‖2

R2 . Moreover, B(t, s) = B(x, t, s) is also a 2 × 2 matrix. We also assume that
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| f ′(y)| + | f ′′(y)| ≤ M, y ∈ R.

Integro-differential equations can arise from many physical processes in which it is deficiency (the local characteristic) of 
the usual diffusion equations (see, for example [10]). At present, many numerical methods have been developed for solving 
these problems. The mathematical difficulty associated with the analysis of numerical approximations to the solution of 
integro-differential equations lies on the integral term. For linear or nonlinear integro-differential equations, the standard 
finite element methods have received considerable attention and are well studied (see, for example [10,11,18,23,27]). For 
mixed finite element methods, please see the References [15,16,22,26]. In [15], a sharper L2-error estimate is obtained 
for the non-Fickian flow of fluid in porous media by means of a mixed Ritz–Volterra projection instead of the mixed 
elliptic projection. Subsequently, Ewing et al. [16] have derived maximum norm estimates and superconvergence results 
for mixed semidiscrete approximation to partial integro-differential equations using mixed Ritz–Volterra projection and 
a tool of approximate Green’s function. In [22], Jiang derived the L∞(L2) and L∞(L∞) error estimates for mixed finite 
element methods for integro-differential equations of parabolic type. In [26], Sinha et al. analyzed the semidiscrete mixed 
finite element methods for parabolic integro-differential equations which arise in the modeling of nonlocal reactive flows 
in porous media and obtained a priori L2 error estimates for pressure and velocity are obtained with both smooth and 
nonsmooth initial data.

The two-grid method which was first proposed by Xu [29,30] as a discretization method for nonsymmetric, indefinite 
and nonlinear partial differential equations. The main idea is to use a coarse-grid space to produce a rough approxima-
tion of the solution of nonlinear problems, and then use it as the initial guess for one Newton-like iteration on the fine 
grid. In [29,30], Xu mainly considered two-grid finite element method for semi-linear elliptic and parabolic problems. After 
his work, two-grid method combined with other numerical methods were further investigated by many authors (see, e.g., 
[3,4,6–8,12,28,31]). Wu and Allen [28] established and analyzed a two-step algorithm by using the two-grid idea for the 
semi-linear reaction–diffusion equations with the expanded mixed finite element method. Based on this work, in order to 
improve accuracy of the algorithm, Chen et al. [8,7] proposed some multi-step two-grid mixed finite element algorithms 
for semilinear parabolic equations. Chen et al. [6] discussed a two-grid method for mixed finite element methods of fully 
nonlinear reaction–diffusion equations. Dawson and Wheeler [12,13] applied this method combined with finite difference 
method and mixed finite element method to nonlinear parabolic equations. Bi and Ginting [3] studied two-grid finite vol-
ume element method for linear and nonlinear elliptic problems. They also investigated two-grid discontinuous Galerkin 
method for quasi-linear elliptic problems in [4]. Chen, Yang and Bi [5] considered two-grid finite volume element method 
for semi-linear parabolic equations. Xu and Zhou [31] presented a two-grid discretization scheme for eigenvalue problems. 
In [21], Jin, Shu and Xu proposed a two-grid finite element method for solving coupled partial differential equations, e.g., 
the Schrödinger-type equation. There also exist other efficient methods such as multilevel algorithm for nonlinear elliptic 
equations and Ginzburg–Landau model, (see, e.g., [19,20]). However, as far as we know there is no convergence analysis 
of two-grid expanded mixed finite element method for nonlinear parabolic integro-differential equations in the literature. 
The nonlinear term makes the theoretical analysis and numerical experiment more difficult. In this paper, we will use the 
two-grid method combined with the lowest order expanded Raviart–Thomas mixed finite element method to solve problem 
(1.1)–(1.3). We first solve a nonlinear problem on the coarse-grid space, then we use the known coarse grid solution and 
a Taylor expansion to extrapolate the solution on the fine grid. On the fine grid we only need to solve a linear system. As 
shown in [6,29], the coarse mesh can be quite coarse and still maintain a good accuracy approximation.

The plan of this paper is as follows. In section 2, we will make some necessary preparations, define the expanded mixed 
Ritz–Volterra projection, and construct the fully discretized expanded mixed finite element approximation of the problem 
(1.1)–(1.3). In section 3, we analyze the approximation properties of the expanded mixed Ritz–Volterra projection and a 
superconvergence property of the pressure variable for the fully discretized scheme. In Section 4, we present the two-grid 
algorithm and prove its error estimates. In Section 5, a numerical experiment is given to verify the theoretical results 
completely. In the last section, we briefly summarize the results obtained and some possible future extensions.

2. Fully discretized mixed finite element scheme

In this section, we shall present the fully discretized expanded mixed finite element approximation scheme of the prob-
lem (1.1)–(1.3).

We adopt the standard notation W m,p(�) for Sobolev spaces (see[1]) on � with a norm ‖ · ‖m,p given by 
‖v‖p

m,p = ∑
|α|≤m ‖Dα v‖p

Lp(�) , a semi-norm | · |m,p given by |v|p
m,p = ∑

|α|=m ‖Dα v‖p
Lp(�) . We set W m,p

0 (�) = {v ∈ W m,p(�) :
v|∂� = 0}. For p = 2, we denote Hm(�) = W m,2(�), Hm

0 (�) = W m,2
0 (�), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2.

We denote by Ls( J ; W m,p(�)) the Banach space of all Ls integrable functions from J into W m,p(�) with norm 

‖v‖Ls( J ;W m,p(�)) =
(∫ T

0 ||v||s
W m,p(�)dt

) 1
s

for s ∈ [1, ∞), and the standard modification for s = ∞. For simplicity of presenta-

tion, we denote ‖v‖Ls( J ;W m,p(�)) by ‖v‖Ls(W m,p) . Similarly, one can define the spaces H1( J ; W m,p(�)) and Ck( J ; W m,p(�)). 
In addition C denotes a general positive constant independent of h and �t , where h is the spatial mesh-size and �t is time 
step.
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