
Applied Numerical Mathematics 130 (2018) 171–183

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Multistep collocation approximations to solutions of first-kind 

Volterra integral equations ✩

Tingting Zhang a, Hui Liang a,b,∗
a School of Mathematical Sciences, Heilongjiang University, Harbin, Heilongjiang, China
b Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 March 2017
Received in revised form 3 April 2018
Accepted 10 April 2018
Available online 12 April 2018

Keywords:
Volterra integral equations
First kind
Multistep collocation methods
Convergence

The multistep collocation method is applied to Volterra integral equations of the first 
kind. The existence and uniqueness of the multistep collocation solution are proved. 
Then the convergence condition of the multistep collocation method is analyzed and the 
corresponding convergence order is described. In particular, for cm = 1, the convergence 
conditions, which can be easily implemented, are given for two-step and three-step 
collocation methods. Numerical experiments illustrate the theoretical analysis.
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1. Introduction

Recently, for Volterra integral equations (VIEs) of the second kind, a general class of multistep collocation methods 
is presented in [4]. Later on, in [5], two-step diagonally-implicit collocation methods are investigated; in [7,8], super im-
plicit multistep collocation methods and multistep Hermite collocation methods are studied respectively; in [13], collocation 
methods by continuous piecewise polynomial collocation approximations are analyzed, which correspond to the two-step 
collocation method investigated in [4]. In addition, for Volterra integro-differential equations, multistep collocation methods 
are analyzed in [3], and superimplicit multistep collocation methods are studied in [6].

In this paper, we consider the following VIE of the first kind

t∫
0

K (t, s)y(s)ds = f (t), t ∈ I := [0, T ]. (1.1)

Here f and K are supposed to be sufficiently smooth functions satisfying f (0) = 0 and |K (t, t)| � k0 > 0 for all t ∈ I . By 
the proof of [1, Theorem 2.1.8], we know that (1.1) can be reformulated as a VIE of the second kind, which means that 
(1.1) can be solved numerically after the reformulation. But we prefer direct solving of (1.1), since now the differentiation 
and approximation of derivatives of K (t, s) and f (t) are not needed. There are many results on the convergence analysis of 
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one-step piecewise polynomial collocation methods for the first-kind VIE (1.1); see the monographs [1,2] and the references 
cited therein for discontinuous collocation approximations. Furthermore, in [11,10], the multistep methods for the first-kind 
VIE (1.1) are analyzed and sufficient conditions for multistep methods to be convergent are derived. Especially, in [12], the 
continuous collocation approximations to the first-kind VIE (1.1) is studied, which is also exactly the two-step collocation 
method investigated in this paper. However, as far as we know, up to now, there are no papers focusing on multistep (more 
than two-step) collocation methods for VIE of the first kind, and it is the aim of this paper to present a complete analysis 
for it.

2. Construction of the multistep collocation method

In order to seek the multistep collocation method for first-kind VIE (1.1), let us discretize the interval I by introducing 
a uniform mesh Ih := {tn := nh, n = 0, 1, . . . , N(tN :=T )} with mesh diameter h := T

N and N ≥ 2 being an integer. Define the 
subintervals σ0 := [t0, t1] and σn := [tn, tn+1], n = 1, . . . , N − 1. Let the collocation parameters be 0 < c1 < · · · < cm ≤ 1 and 
the collocation points be tn, j := tn + c jh, j = 1, . . . , m; n = 0, . . . , N − 1.

The r +1-step collocation method is obtained by introducing in the collocation polynomial the dependence on r previous 
time steps; namely we seek an approximation uh to the solution y of (1.1), which is represented by the interpolation 
formula

uh(tn + sh) =
r−1∑
k=0

ϕk(s)yn−k +
m∑

j=1

ψ j(s)Yn, j, s ∈ [0,1], n ≥ r − 1, (2.1)

where ϕk(s) and ψ j(s) are polynomials of degree m + r − 1, and Yn, j := uh(tn, j), yn−k := uh(tn−k). In σn (0 ≤ n < r − 1), the 
starting values y1, y2, . . . , yr−1 can be obtained based on a classical one step method, and y0 is chosen as the exact value 
y(0) = y(t0) = f ′(0)

K (0,0)
by differentiating with respect to t in (1.1).

The interpolation conditions at tn−k , k = 0, . . . , r − 1, that is yn−k = uh(tn−k), together with the condition Yn, j = uh(tn, j), 
lead to the following linear system:

ϕl(−k) = δlk, ϕl(c j) = 0, l,k = 0, . . . , r − 1;
ψi(−k) = 0, ψi(c j) = δi j, i, j = 1, . . . ,m.

By [4], we know that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕk(s) =
m∏

i=1

s − ci

−k − ci
·

r−1∏
i=0
i �=k

s + i

−k + i
,

ψ j(s) =
r−1∏
i=0

s + i

c j + i
·

m∏
i=1
i �= j

s − ci

c j − ci
.

(2.2)

Moreover, the approximation uh satisfies the following collocation equation

f (tn, j) =
tn, j∫
0

K (tn, j, s)uh(s)ds, j = 1,2, . . . ,m. (2.3)

Inserting (2.1) into (2.3), we obtain, for each n = r − 1, . . . , N − 1, a linear system for the unknown Yn, j with j = 1, . . . , m:

h
m∑

j=1

ci∫
0

K (tn,i, tn + sh)ψ j(s)dsYn, j

= f (tn,i) − h
r−2∑
l=0

1∫
0

K (tn,i, tl + sh)uh(tl + sh)ds

− h
n−1∑

l=r−1

r−1∑
k=0

1∫
0

K (tn,i, tl + sh)ϕk(s)dsyl−k
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