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We present the error analysis of a high-order method for the two-dimensional acoustic 
wave equation in the particular case of constant compressibility and variable density. 
The domain discretization is based on the spectral element method with Gauss–Lobatto–
Legendre (GLL) collocation points, whereas the time discretization is based on the explicit 
leapfrog scheme. As usual, GLL points are also employed in the numerical quadrature, so 
that the mass matrix is diagonal and the resulting algebraic scheme is explicit in time. The 
analysis provides an a priori estimate which depends on the time step, the element length, 
and the polynomial degree, generalizing several known results for the wave equation in 
homogeneous media. Numerical examples illustrate the validity of the estimate under 
certain regularity assumptions and provide expected error estimates when the medium 
is discontinuous.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The spectral element method, a high-order method that combines the high accuracy of spectral methods and the ge-
ometrical flexibility of finite elements, was originally proposed for fluid dynamics [24], and has reached great success in 
the numerical simulation of seismic waves [19,21,25,29]. In this field, the spectral element method with Gauss–Lobatto–
Legendre (GLL-SEM) collocation points is most often used because it naturally leads to explicit time-marching schemes.

Maday and Rønquist [22] carried out a p analysis of GLL-SEM for the diffusion equation with variable coefficients and 
non-affine elements. The analysis for Stokes and Navier–Stokes equations can be found in [4]. The error analysis for the wave 
equation in homogeneous media was presented by Zampieri and Pavarino [32], Rong and Xu [27], and Durufle et al. [11]. 
The first two works carry out the study entirely in time domain, following the steps from [26], while the analysis in [11] is 
developed in the Laplace transform domain.

In this work we extend error estimates reported in [11,27,32] to the following scalar wave equation:

ü(x, t) − div(c2(x)∇u(x, t)) = f (x, t). (1)

Error analyses of continuous and discontinuous Galerkin methods for equation (1) have been proposed in the literature 
[9,14]. In the context of acoustic waves, u(x, t) models the acoustic pressure in a medium with heterogeneous density ρ(x)
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and constant bulk modulus K0, and c(x) = √
K0/ρ(x) represents the speed of propagation. In general, heterogeneity of phys-

ical parameters is a crucial assumption on wave propagation models. Discontinuous coefficients are frequently employed, for 
instance in the description of geological structures, but smooth parameters are also relevant in wave propagation, especially 
with the advent of functionally graded materials [8,16,23].

Analogously to the study presented in [27,32], the analysis is performed in time domain, but since our focus is in the 
leapfrog time integration, our analysis is structured as in the study by Grote and Schötzau of an interior penalty discontin-
uous Galerkin method [14]. Their theoretical results cannot be directly applied to GLL-SEM because quadrature error must 
be taken into account. We undertake this task, gathering relevant results from the literature of hp finite element analysis, 
as well as from the above-mentioned studies of spectral elements. It is worth mentioning that the analysis is limited to 
homogeneous Dirichlet boundary conditions, which do not represent the typical case of real applications in the framework 
of wave phenomena [1,20,23].

The remainder of the paper is organized as follows: in the first section we introduce the functional spaces needed in 
the analysis as well as the wave propagation problem studied in this work and its numerical discretization. In section 3
we present preliminary results for the error analysis. An a priori error bound for the spectral element approximation to the 
wave equation is provided in Section 4. Section 5 is devoted to numerical examples. Mathematical proofs of auxiliary results 
are presented in the appendix.

2. Problem setting

Let us initially consider an open, polygonal domain � ⊂ IR2 with closure �̄ and boundary � = ∂�. We consider the 
Hilbert space L2(�) equipped with the usual inner product and induced norm

(u, v) =
∫
�

u(x)v(x) dx, ‖v‖2
0 = (v, v)1/2. (2)

We will denote temporal derivatives as u̇, ̈u, u(3), u(4), . . . , whereas spatial derivatives will be denoted as

∂u

∂x1
,

∂u

∂x2
,
∂2u

∂x2
1

,
∂2u

∂x1∂x2
, . . .

Moreover, given the multi-index α = (α1, α2) with α1, α2 ∈ IN , we denote

Dαu = ∂ |α|u
∂xα1

1 ∂xα2
2

, with |α| = α1 + α2. (3)

Given a positive integer m, we will also resort to Sobolev spaces Hm(�) with the standard norms and semi-norms

‖v‖2
m =

m∑
l=0

|v|2l , |v|2l =
∑
|α|=l

‖Dα v‖2
0, (4)

as well as Sobolev spaces W m,∞(�) with norms and semi-norms

‖v‖m,∞ = max
0≤l≤m

|v|l,∞, |v|l,∞ = max
|α|=l

ess sup{|Dα v(x)| ; x ∈ �)}. (5)

If s = m + θ , where m > 0 is the integer part of s and 0 < θ < 1, one can define H s(�) as follows [13]:

Hs(�) =
{

v ∈ Hm(�) ; ‖v‖2
s = ‖v‖2

m +
∑

|α|=m

∫
�×�

|Dα v(x) − Dα v(y)|2
|x − y|2+2θ

dxd y < ∞
}

.

The following subspace of H1(�) is crucial in the study of second-order boundary-value problems:

H1
0(�) = {u ∈ H1(�) : u|� = 0

}
,

where u|� denotes the trace of u on �. Following [26, Sec. 7.2], let us introduce spaces of functions v = v(t) mapping 
elements of the interval [0, T ] to a Banach space X with norm ‖ · ‖X . For each integer m ≥ 0, we denote by Cm(0, T ; X) the 
space of functions m times continuously differentiable over [0, T ] with image into X ; this is a Banach space with norm

‖v‖Cm(0,T ;X) = max
0≤l≤m

(
sup

0≤t≤T
‖v(l)(t)‖X

)
. (6)

On the other hand, the space L2(0, T ; X) is defined as the space of functions v strongly measurable over (0, T ) with 
respect to the measure dt . L2(0, T ; X) is a Banach space with norm
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