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Abstract

This paper considers the long-time integration of the nonlinear fractional Schrodinger equation
involving the fractional Laplacian from the point of view of symplectic geometry. By virtue of a
variational principle with the fractional Laplacian, the equation is first reformulated as a Hamilto-
nian system with a symplectic structure. Then, by introducing a pair of intermediate variables with
a fractional operator, the equation is reformulated in another form for which more conservation
laws are found. When reducing to the case of integer order, they correspond to multi-symplectic
conservation law and local energy conservation law for the the classic Schrodinger equation. After
that, structure-preserving algorithms with the Fourier pseudospectral approximation to the spatial
fractional operator are constructed. It is proved that the semi-discrete and fully discrete systems
satisfy the corresponding symplectic or other conservation laws in the discrete sense. Numerical
tests are performed to validate the efficiency of the methods by showing their remarkable conser-
vation properties in the long-time simulation.
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1. Introduction

Fractional quantum mechanics is a natural extension of quantum mechanics that has been at-
tracting great interest since its introduction by Laskin via replacing Brownian trajectories in Feyn-
man path integrals by the Lévy ones [1, 2]. It leads to the fractional Schrédinger equation (FSE)
— a generalization of the classical Schrodinger equation, which involves the fractional Laplacian
with the Lévy index 1 < o < 2 instead of the usual one. The FSE also arises in the continuum
limit of a family of discrete models for charge transport in biopolymers like the DNA [3]. In the
special case of @ = 2, the equation reduces to the classical Schrodinger equation which describes a
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