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The backward heat conduction problems aim to determine the temperature distribution 
in the past time from the present measurement data. For this linear ill-posed problem, 
we propose a homotopy-based iterative regularizing scheme for noisy input data. The 
advantages of the proposed scheme are, under general assumptions on the exact initial 
distribution, we can always ensure the convergence of the homotopy sequence with exact 
final data as initial guess. For noisy input data, we also establish the error analysis for the 
regularizing solution with noisy measurement data as our initial guess. Our algorithm is 
easily implementable with very low computational costs in the sense that we only need 
to do one iteration from initial guess using the final noisy data directly, while the error is 
still comparable to other regularizing methods. Numerical implementations are presented.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The classical heat conduction problems aim to determine the temperature distribution for given initial status and 
heat source. The simplest heat conduction process in a bounded homogeneous rod can be modeled by the following 
1-dimensional initial boundary value problem⎧⎪⎨

⎪⎩
ut = uxx + f (x, t), (x, t) ∈ (0,π) × (0, T ) := �T

u(0, t) = u(π, t) = 0, t ∈ [0, T ]
u(x,0) = g(x), x ∈ [0,π ],

(1.1)

with f (x, t) being the known heat source and g(x) the initial temperature. Except for the temperature for heat conduction, 
some other physical quantities governed by the diffusion process such as the concentration of the pollutants can also be 
described by this well-posed mathematical model.

However, in many engineering areas such as archeology and environgeology, we need to consider the so-called backward 
problems, namely, instead of giving the initial status g(x), the distribution or its noisy measurement of physical quantity 
at some final time T > 0 is specified, we are also asked to find u(x, t) for 0 ≤ t < T . Physically, such kinds of time-reverse 
problems try to infer the status before from its current information. Since this process conflicts with the physical principle 
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of entropy decreasing, such problems are of great importance and consequently receive much attentions in engineering com-
munities, see [10,17,19,25]. Mathematically, they belong to the category of ill-posed problems for PDEs, see the researches 
under general framework with regularizing schemes [5,9,18].

Let us state this problem precisely. Assume that u[g](x, T ) := φ(x) is the exact field at t = T generated by (1.1) from 
some unknown initial distribution g ∈ L2(0, π). Now we are given the noisy data of φ(x), denoted by φδ(x), satisfying

‖φδ − φ‖L2(0,π) ≤ δ. (1.2)

Then the backward heat conduction problem is to reconstruct the initial data g(x), or, consequently, u(x, t) for 0 ≤ t < T in 
terms of (1.1)–(1.2) from giving noisy data φδ(x). In the sequel, we always assume that the source f (x, t) is known.

It is well-known that, although φ(x) = u[g](x, T ), φδ(x) may not be the final temperature yielded from any initial data 
u(x, 0) even if for arbitrarily small δ. This fact means we cannot approximate u(x, t) by solving (1.1) directly with initial 
data u(x, 0) = g(x) replaced by final data u(x, T ) = φδ(x). Due to the great importance of such kinds of problems, the 
backward diffusion problems have been studied for a long time with extensive literatures, for example, see [2,6,7,11,22]. 
The main research topics are the conditional stability for stable computations and the constructions of the regularizing 
solution for noisy input data which can approximate the exact physical quantity. Roughly speaking, the error bounds of 
the approximations depend both on the regularizing schemes and also on the a-priori assumptions on the exact initial 
value g(x). The main arguments dealing with these problems are the quasi-reverse methods [3,5,9], the integral equations 
methods [4,8] as well as the optimization schemes [15]. The general schemes are firstly to reconstruct the initial distribution 
u(x, 0) = g(x) from φδ(x) and then to determine u(x, t) for 0 < t < T by solving the well-posed forward problem (1.1). 
However, to get a satisfactory approximation to g(x) from the noisy data φδ , the strict a-priori restrictions on g(x) should be 
assumed. The backward problems for abnormal diffusion process with time fractional derivatives in the governed equations 
have also been considered recently, see [16,26,29], for example.

In recent years, the homotopy analysis methods (HAM) have been proposed to solve some PDEs problems by iteration 
process, see [1,13,20,21,23,28], showing powerful effects on solving many engineering problems. Although several theoretical 
issues have been considered [14,27], the rigorous mathematical analysis such as the convergence and the error analysis 
seems still be in the initial stages for this algorithm. On the other hands, it has been found that the HAM schemes can also 
be applied to solve some inverse problems, see [21,24,28].

The concept of homotopy is originated from the topology. A simple application is to find the zero point x∗ of a function 
r(x) by considering the homotopy equation φ(x; p) = 0 for p ∈ [0, 1], where the homotopy function φ(x, p) is introduced 
to map φ(x, 0) = r0(x), φ(x, 1) = r(x) for some simple known function r0(x). The homotopy scheme aims to determine x∗
from the known root x0 of r0(x) = 0 by some iteration process based on the power series expansion of φ(x, p) in terms 
of p ∈ [0, 1]. The main difficulty for the successful implementations of the homotopy scheme is the convergence of the 
iteration solution at p = 1, which ensures that the iterative solution converges indeed to the root of r(x) = 0, see [27] for 
some tutorials. For homotopy analysis method applied in solving some ODEs/PDEs problems, the theoretical analysis is still 
in the initial stage, since the convergence of the homotopic Maclaulin series at p = 1 heavily depends both on the functional 
describing the problem and on the artificially introduced homotopy transform. For more details, see [12,14].

In this paper, we propose an iteration scheme based on the homotopy iteration to determine u(x, t) in 0 ≤ t < T directly 
from the final noisy data φδ(x), without the necessity to reconstruct g(x) firstly. Our iteration process begins with the given 
final measurement as initial guess and the convergence is ensured. The approximation error of this iteration process for 
noisy input data is also analyzed rigorously.

We initialize the application of the homotopy scheme to solve the backward diffusion problems by considering heat con-
duction problem (1.1)–(1.2). Different from the homotopy schemes for solving well-posed ODE/PDE problems, our problem 
is ill-posed. That is, we need to consider both the convergence property of the iteration process and the error propagation 
during the iteration process. Due to the ill-posedness, the iteration should stop at some reasonable step depending on the 
noisy level to avoid the amplification of error. Once the number of series truncations is determined in terms of our error 
estimates, our iterative scheme needs only one iteration essentially, which provides a very efficient computational algorithm.

There exist extensive literatures related to the backward problems. The backward problems for general abstract equa-
tion u′(t) + Au(t) = 0 are considered in [5,9,18] with convergence analysis of the regularizing solution, but without 
implementable numerical schemes. Especially, [9] establishes the regularizing theory in the Banach space. In [10], the 
2-dimensional backward heat conduction problem in a bounded domain of arbitrary shape is considered, with a higher 
order difference scheme based on the Fourier transform and Taylor expansion, to overcome the difficulty of ill-posedness. 
The well-known meshless techniques based on the fundamental solution to standard heat equation ut (x, t) = �u(x, t) in 
x ∈ � ⊂ R

d are numerically studied for backward problem in [19] for d = 1, 2 and in [25] for d = 3. Although this scheme 
has shown its validity for many engineering problems, the theoretical analysis on the locations of sources are still absent. 
In [17], the authors solved the backward heat conduction problems by the backward time dynamics with some numerical 
implementations for 1-dimensional heat conduction problem. Compared with all the above existing works, our homotopy 
reconstruction algorithm proposed in this paper is an explicit iteration scheme with rigorous convergence analysis and error 
estimates on the regularizing solution. Moreover, the theoretical framework established here can be generalized to consider 
other linear ill-posed problems, not necessarily the backward heat conduction problems.

This paper is organized as follows. In section 2, we establish the iteration scheme by the homotopy analysis for (1.1)–(1.2), 
with the convergence analysis on this process for exact final data φ(x). Then in section 3, we apply this iteration process to 
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