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In this paper, we propose full discrete linear schemes for the molecular beam epitaxy 
(MBE) model with slope selection, which are shown to be unconditionally energy stable 
and unique solvable. In details, using the invariant energy quadratization (IEQ) approach, 
along with a regularized technique, the MBE model is first discretized in time using either 
Crank–Nicolson or Adam–Bashforth strategies. The semi-discrete schemes are shown to 
be energy stable and unique solvable. Then we further use Fourier-spectral methods to 
discretize the space, ending with full discrete schemes that are energy-stable and unique 
solvable. In particular, the full discrete schemes are linear such that only a linear algebra 
problem need to be solved at each time step. Through numerical tests, we have shown a 
proper choice of the regularization parameter provides better stability and accuracy, such 
that larger time step is feasible. Afterward, we present several numerical simulations to 
demonstrate the accuracy and efficiency of our newly proposed schemes. The linearizing 
and regularizing strategy used in this paper could be readily applied to solve a class of 
phase field models that are derived from energy variation.

© 2018 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

Molecular beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. So far quite a few mathe-
matical models as well as the accompanying numerical simulation tools have been developed to study dynamics of the MBE 
growth process [3,5,16,20,21,36,45]. For the continuum model, there are several approaches developed to model molecular 
beam epitaxy growth. One popular approach is the energy-variational based. In [12], Golubovic introduces the effective free 
energy formation of the MBE growth model (without slope selection); and in [30], Moldovan and Golubovic introduce the 
MBE growth model (with slope selection), where the anisotropic MBE models are also considered (affecting the coarsening 
dynamics). Notice that there are many other cases, where the surface motion could not be generated by an effective free 
energy functional [13,23–27].

Given the effective free energy, we present the MBE growth model and discuss its energy dissipation properties which 
serve as a guideline for us developing numerical schemes. Let φ(x, t) be the epitaxy surface height with x ∈ �, where � is a 
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confined domain in R2. Under typical conditions for MBE growth, the height (φ) evolution equation is given in a relaxation 
dynamical form of a L2 gradient flow:

φt = −M
δE

δφ
, (1.1)

where M is the mobility coefficient, E is the effective free energy (which represents the kinetic asymmetry in attachment 
and detachment of adatoms to and from terrace boundaries [28]) and δE

δφ
denotes the variational derivative of E with respect 

to φ.
For the effective free energy, two widely used phenomenological expressions are as follows: (1) with slope selection 

expression [30]

E(φ) =
∫
�

(ε2

2
(�φ)2 + 1

4
(|∇φ|2 − 1)2

)
d�, (1.2)

and without slope selection expression [12]

E(φ) =
∫
�

(ε2

2
(�φ)2 − 1

2
ln(1 + |∇φ|2)

)
d�, (1.3)

where ε is a constant (inversely proportional to the size of the system). A detailed discussion of differences between these 
two free energies could be found in [28]. In short, the first term in the free energy represents the surface diffusion effect 
and the second term represents a continuum description of the effect that the adatoms (absorbed atoms) must overcome 
a higher energy barrier to stick to a step from an upper rather than from a lower terrace. After substituting the expression 
of free energy (1.2) and (1.3) into the model (1.1), we obtain the two nonlinear MBE models: (1) MBE model with slope 
selection

∂tφ = −M
(
ε2�2φ − ∇ · ((|∇φ|2 − 1)∇φ)

)
, (1.4)

and (2) MBE model without slope selection

∂tφ = −M
(
ε2�2φ − ∇ · ( ∇φ

1 + |∇φ|2 )
)
. (1.5)

A feature of the continuum MBE models considered in this paper, i.e. (1.4) and (1.5), is that it is derived from an 
energy variational approach and thereby satisfies an energy dissipation law (or thermodynamically consistent). The energy 
dissipation law, in fact, serves as a guide for the design of thermodynamically consistent (energy stable) numerical schemes. 
In practice, it is especially desirable in the design of numerical schemes that preserve the energy dissipation property at the 
discrete level. On the one hand, the preservation of the energy law is critical for the numerical schemes to capture correct 
long-time dynamics of the system. On the other hand, the unconditional stability of the energy dissipation preserving 
schemes provides flexibility for dealing with the stiffness issue in the model.

In this paper, we consider numerical approximations to the continuum MBE growth model (1.1) with free energy (1.2), 
which is obtained by minimizing the given free energy where the nonlinear potential is a fourth order Ginzburg–Landau 
double-well potential in terms of the gradient of a height function. Here we give a brief review of available papers in the 
literature on proposing efficient numerical schemes for solving the MBE model. In [46], Wang et al. used convex splitting 
strategy to propose unconditionally energy stable schemes for MBE model. Qiao et al. proposed an adaptive time-stepping 
strategy for the MBE model with slope selection [33], and Qiao et al. proposed energy stable schemes for the MBE model 
without slope selection and its convergence analysis [31]. Chen et al. proposed a linear energy stable scheme for MBE model 
without slope selection using convex splitting strategy [4]. In [28], Li et al. developed a spectral method for solving the MBE 
models. In [52], Xia proposed a full discrete stable scheme for MBE model without slope selection using discontinuous 
Galerkin method. Recently, Feng et al. developed a linearly preconditioned nonlinear conjugate gradient solver [8] and a 
second-order energy-stable BDF scheme for MBE model with slope selection [9]. Some other related papers include [19,22,
29,32,37].

Mainly, the strategies for developing energy stable schemes can be generally categorized into two parts. The first part 
named stabilized approach, where the nonlinear terms are treated explicitly, but some linear stabilizing terms are added 
to provide better stability of the scheme. This so-called stabilized approach have been broadly used in phase-field models, 
see [40,42–44,53,62,63,66,67]. Another approach is named “convex splitting”, which was originally proposed in [7] and has 
been exploited by the numerical analysis society [17,46,47,49,50]. The idea of convex splitting is to split the free energy as a 
convex potential minus another convex potential. Then the chemical potential from the first convex part is solved implicitly, 
and the rest is solved explicitly. The advantage of the stabilized approach is its simplicity to implement, as it is linear, but 
it is only first order in time (due to the first-order error introduced in the stabilizing term), and it has to assume/truncate 
the free energy (which should not be ignored in the continuum PDE level). For the convex splitting approach, its existence 
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