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In this paper, we focus on a decoupled, linearized semi-implicit Galerkin FEM scheme for 
a MHD system coupled by the time-dependent Navier–Stokes equation with the steady 
Maxwell’s equations in three-dimensional convex domain. First, additional regularities of 
the solution to the coupled MHD system are derived. By using H1-conforming finite 
element to approximate the magnetic field, it is shown that the proposed semi-linearized 
scheme is of the first-order convergence order of the velocity field, the magnetic field and 
the pressure under the time step condition �t =O(h).

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The incompressible magnetohydrodynamics (MHD) equations are used to describe the flow of a viscous, incompressible 
and electrically conducting fluid. The governing equations form a multifield problem which arises in several applications 
such as liquid metals in magnetic pumps or aluminum electrolysis. For comprehensive accounts of the physical background 
of the MHD equations, we refer to Hughes [14] and Moreau [16].

It is well-known that the MHD equations consist of a coupling between the Navier–Stokes equations of continuum fluid 
mechanics and the Maxwell equations of electromagnetism. There have several papers which are devoted to the design 
and the analysis of numerical schemes for the simulation of the stationary or nonstationary MHD problem. For the sta-
tionary MHD problem which is coupled by the stationary Navier–Stokes equations and the stationary Maxwell equations, 
Gunzburger, Meir & Peterson in [9] gave a detailed existence theory and convergence analysis of finite element method in 
a bounded and simply-connected domain � ⊂ R3 that was either convex or whose boundary was of class C1,1 by using 
H1-conforming finite element to approximate the magnetic field. A stabilized mixed finite element method was developed 
by Gerbeau [5]. For the non-convex domain or Lipschitz polyhedra domain of engineering practice, the magnetic field may 
have regularity below H1(�). In this case, the H1-conforming finite element approximation solution for the magnetic field, 
albeit stable, may not converge to the correct magnetic field. A mixed finite element formulation based on H(curl)-element 
for the magnetic field was proposed and studied by Schötzau in [18] for the stationary MHD problem. For the nonstationary 
MHD problem which was coupled by the transient Navier–Stokes equations and the transient Maxwell equations, He pro-
posed a linearized semi-implicit Euler scheme in [10], where L2-unconditional convergence of this scheme was proved by 
using the negative norm technique. A fully discrete Crank–Nicolson scheme was studied in [22]. We notice that a decoupled 
numerical scheme was studied by Zhang & He [21]. The difference with this paper is that they consider the nonstation-
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ary MHD problem in [21]. Recently, Xu and his collaborators designed and analyzed a structure preserving finite element 
scheme in [13,15], where the main feature was that the proposed finite element scheme naturally preserved the important 
Gauss’s law. Some decoupled, unconditionally stable schemes were studied in [2,11], where the main feature was that the 
nonstationary MHD problem was rewritten in Elsässer variables [20] instead of primitive variables. Then the MHD problem 
can be decoupled in an unconditionally stable way into two Oseen problems at every time step. There have some other fully 
discrete schemes, such as the projection methods [3,17], the fractional-step method [4]. For a review of numerical methods 
for the MHD problem, we refer readers to Gerbeau, Bris & Lelièvre [8].

In this paper, we consider the following hybrid MHD system which is coupled by the transient Navier–Stokes equations 
and the stationary Maxwell equations in the primitive variable formulation:

∂u

∂t
− 1

Re
�u + (u · ∇)u + ∇p + Sb̃ × curl b̃ = f in � × (0, T ], (1.1)

div u = 0 in � × (0, T ], (1.2)
1

Rm
curl (curl b̃) − curl (u × b̃) = 0 in � × (0, T ], (1.3)

div b̃ = 0 in � × (0, T ], (1.4)

u(x,0) = u0 in �, (1.5)

u = 0, b̃ · n = q, curl b̃ × n = 0 on ∂� × [0, T ], (1.6)

with some T > 0, where � ⊂ R3 is a bounded, simply-connected and convex domain. Positive constants Re, Rm and S
denote the Reynolds number, the magnetic Reynolds number and the coupling number, respectively. The vector-value func-
tion f represents the body forces applied to the fluid. n denotes the unit outward normal vector on ∂�. The initial vector 
functions u0 satisfies the compatibility condition div u0 = 0. The unknowns in (1.1)–(1.6) are the fluid velocity field u, the 
pressure p and the magnetic field b. Such a system arises for instance in the modelling of an industrial process when the 
magnetic phenomena is known to reach their steady state “infinitely” faster than the hydrodynamics phenomena. From (1.3)
we can see that the equations related to the magnetic field are elliptic. Moreover, the ellipticity of the equations depends 
on the velocity field u. Briefly speaking, if the velocity field u becomes too large, the MHD system (1.1)–(1.6) may become 
ill-posed. Under restrictive assumptions depending upon the physical data, Gerbeau & Bris in [6,7] showed that the MHD 
system (1.1)–(1.6) existed a unique local strong solution on a time interval [0, T �] for some T � < T .

As described above, although there have many works about numerical schemes for the stationary or nonstationary MHD 
problems, but no numerical methods are studied for the hybrid MHD system (1.1)–(1.6). In this paper, we will present a 
first-order decoupled, semi-implicit FEM scheme for numerical simulation of (1.1)–(1.6). The proposed fully discrete FEM 
scheme consists of two steps. At first step, we solve the magnetic field by using semi-implicit scheme for the nonlinear 
term curl (u × b). At second step, we solve the velocity field and the pressure by using semi-implicit scheme for the 
nonlinear term (u · ∇)u. Because the stability, the convergence and the convergence rates are important in studying the 
fully discrete FEM schemes for the nonlinear parabolic problems, in this paper, based on the mixed finite element which 
consists of approximating the velocity field and the pressure with Taylor–Hood element, the magnetic field with the classical 
H1-conforming Lagrange finite element, we will show the optimal temporal-spatial error estimates of the velocity field, the 
pressure and the magnetic field under the time step condition �t =O(h).

This paper is organized as follows. In next section, we begin with some notations and lay out the proofs of some 
additional regularities of the solution to (1.1)–(1.6). These regularities are used in the proof of the temporal-spatial error 
estimates. The proposed decoupled, semi-implicit finite element scheme and the regularities of the time discrete schemes 
are presented in Section 3. Especially, for the time discrete schemes, inspired by [6,7], we can show that a unique solution 
exists under restrictive assumptions depending upon the physical data. Optimal temporal-spatial error estimates are given 
in Section 4. Meanwhile, we show these error estimates by using mathematical induction method under some reasonable 
regularities. The numerical results are given to verify our theoretical analysis in Section 5. Final section is a summary section 
about the main results derived in this paper.

2. Mathematical setting and some regularity results

Throughout this paper, the symbols C, C0, C1, · · · are used to denote the general positive constants being independent 
of the time step �t and the mesh size h. For the mathematical setting of the MHD system (1.1)–(1.4) with the initial and 
boundary conditions (1.5)–(1.6), we introduce some function spaces and their associated norms. For k ∈ N

+ and 1 ≤ p ≤ +∞, 
let W k,p(�) denote the standard Sobolev spaces. The norms in W k,p(�) are defined by

||u||W k,p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝ ∑
|β|≤k

∫
�

|∇βu|pdx

⎞⎠1/p

for 1 ≤ p < +∞,

∑
|β|≤k

sup
�

|∇βu| for p = +∞,
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