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In this paper we discuss an improvement of the triangular Shepard operator proposed by 
Little to extend the Shepard method. In particular, we use triangle based basis functions 
in combination with a modified version of the linear local interpolant on the vertices of 
the triangle. We deeply study the resulting operator, which uses functional and derivative 
data, has cubic approximation order and a good accuracy of approximation. Suggestions 
on how to avoid the use of derivative data, without losing both order and accuracy of 
approximation, are given.
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1. Shepard and triangular Shepard operators

In 1983 Little introduces a variation of the Shepard method, one of the earliest technique for interpolating scattered 
data {(xi, f i)}i=1,...,n , where X = {x1, x2, . . . , xn} ⊂ R

2 has no-structure and f i = f (xi) are the values of an unknown func-
tion f . Little associates to the node set X an appropriate list of triangles T , with vertices {x j1 , x j2 , x j3 } ⊂ X such that 
X = ⋃

j1, j2, j3

{x j1 , x j2 , x j3 }, and substitutes the point-based Shepard basis functions

Aμ,i(x) =
1

|x − xi |μ
n∑

k=1

1

|x − xk|μ
, i = 1, . . . ,n (1)

with triangle-based basis functions

Bμ, j(x) =

3∏
�=1

1∣∣x − x j�

∣∣μ
m∑

k=1

3∏
�=1

1∣∣x − xk�

∣∣μ
, j = 1, . . . ,m, (2)
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where |·| is the euclidean norm in R2 and μ is a positive parameter. In addition, Little substitutes the functional values f i

in the convex combination defining the Shepard operator

Sμ[ f ](x) =
n∑

i=1

Aμ,i(x) f i (3)

with the values of the local linear interpolant L j[ f ](x) on the vertices {x j1 , x j2 , x j3 } of the triangle t j ∈ T and introduces 
the triangular Shepard operator

Kμ[ f ](x) =
m∑

j=1

Bμ, j(x)L j[ f ](x). (4)

As remarked by Little, the advantages of the triangular Shepard operator (4) with respect to the Shepard operator (3) are a 
higher polynomial precision and a better esthetic behavior in approximating and interpolating continuous functions when 
only functional data values are supplied. In fact both Shepard basis function (1) and triangular Shepard basis functions (2)
are positive

Aμ,i(x) ≥ 0, i = 1, . . . ,n, Bμ, j(x) ≥ 0, j = 1, . . . ,m, (5)

and form a partition of unity

n∑
i=1

Aμ,i(x) = 1,

m∑
j=1

Bμ, j(x) = 1. (6)

Moreover they are cardinal, that is

Aμ,i(x j) =
{

0, if i �= j,
1, if i = j,

(7)

while

Bμ, j(xi) = 0, for each xi /∈ {x j1 , x j2 , x j3}, (8)

and ∑
j∈ J i

Bμ, j(xi) = 1, (9)

where J i = {
k ∈ {1, . . . , m} : i ∈ {k1, k2, k3}

}
is the set of indices of all triangles which have xi as a vertex. But, while the 

vanishing of the first order derivatives of the Shepard basis functions (μ > 1) at each interpolation node

∇ Aμ,i(x j) = 0, for each x j, (10)

causes the presence of flat spots in the Shepard interpolant, the analogous property satisfied by the triangular Shepard basis 
functions (μ > 1)

∇Bμ, j(xi) = 0, for each xi /∈ {x j1 , x j2 , x j3}, (11)

and ∑
j∈ J i

∇Bμ, j(xi) = 0, (12)

allows, in the triangular Shepard operator, the interpolation of the first order derivatives of the local linear interpolant at 
each node [5].

On the other hand, at a first glance, Little remarks that the triangular Shepard is certainly more complex than Shepard’s 
method since it presupposes the definition of an appropriate list of index triples and he does not give any suggestion on how 
to choose triangles, neither studies the approximation order nor the accuracy of approximation of the introduced operator. 
A recent paper [5] highlights the good approximation accuracy of the triangular Shepard method and its quadratic approx-
imation order (μ > 4/3) for both Delaunay triangulations of the nodes and compact triangulations with about 65% fewer 
triangles which yields a more efficient interpolation operator with comparable approximation accuracy. In fact, similarly to 
the Delaunay triangulation, compact triangulations avoid slider triangles, since they are realized in order to minimize the 
error of the local interpolants. But unlike the Delaunay triangulations, the procedure to define a compact triangulation is 
local, that is all triangles are independent each from others, to the point that overlapping or disjoint triangles are allowed.
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