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The main purpose of this work is to develop an integral pseudospectral scheme for solving 
integro-differential equations. We provide new pseudospectral integration matrices (PIMs) 
for the Legendre–Gauss and the flipped Legendre–Gauss–Radau points, respectively, and 
present an efficient and stable approach to computing the PIMs via the recursive calcu-
lation of Legendre integration matrices. Furthermore, we provide a rigorous convergence 
analysis for the proposed pseudospectral scheme in both L∞ and L2 spaces via a linear in-
tegral equation, and the spectral rate of convergence is demonstrated by numerical results.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

A variety of phenomena can be modeled as integro-differential equations (IDEs). By far a large collection of numerical 
methods has been developed to solve those equations (see, e.g., [3,5,7,10,13,14,19,20]), among which pseudospectral meth-
ods have been one of the most promising methods. The main advantage of pseudospectral methods over other methods 
lies in their ability to provide highly accurate approximations while converging spectrally (i.e., at an exponential rate) for 
smooth problems, exhibiting the so called “spectral accuracy” [16]. In general, pseudospectral methods can be grouped into 
two major categories: differential and integral. The former are known to be severely ill-conditioned when the number of 
collocation points is large, while the latter are well-conditioned even for large number of collocation points [8,10]. In this 
work, we focus on integral pseudospectral methods.

The basic principle of integral pseudospectral methods is to recast IDEs as integral equations (IEs), and then discretize 
the latter using pseudospectral integration matrices (PIMs) [9]. Therefore, the well-conditioning of integral pseudospectral 
methods relies heavily on that of PIMs and several distinctive approaches [6,8,9] have been proposed for computing PIMs. 
El-Gendi et al. [6] adopted the Cauchy’s formula to compute the PIM for the Chebyshev–Gauss–Lobatto (CGL) points from 
the corresponding first-order PIM. Subsequently, Elbarbary [8] presented a new approach to computing the same PIM based 
on the exact relation between the Chebyshev polynomials and their derivatives. Recently, Elgindy [9] has derived the above 
PIM using an explicit formula for the iterated integrals of Chebyshev polynomials.

The aim of this paper is to develop an integral pseudospectral scheme for solving IDEs. More precisely, we provide 
new PIMs for the Legendre–Gauss (LG) and the flipped Legendre–Gauss–Radau (FLGR) points, respectively, and present an 
efficient and stable approach to computing the PIMs via the recursive calculation of Legendre integration matrices (LIMs). 
Furthermore, we provide a rigorous convergence analysis for the proposed pseudospectral scheme in both L∞ and L2 spaces 
via a linear IE, which theoretically justifies the spectral rate of convergence.
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The rest of this paper is organized as follows. In Section 2, the Legendre polynomials are presented for subsequent 
developments. In Section 3, the definitions and computation of LIMs are presented. This is followed by the definitions 
and computation of PIMs in Section 4. The detailed implementation of integral pseudospectral scheme for solving IDEs is 
provided in Section 5. In Section 6, the convergence analysis in both L∞ and L2 spaces is provided. Numerical results are 
shown in Section 7. Finally, Section 8 contains some concluding remarks.

2. Legendre polynomials

The Legendre polynomials are orthogonal polynomials on the interval [−1, +1], and satisfy the following orthogonality 
relation:

+1∫
−1

Li(τ )L j(τ )dτ = λiδi j, (1)

where λi = 2
2i+1 is the normalization factor, and δi j is the Kronecker delta. The three-term recursion formula for the Legen-

dre polynomials is given by

L0(τ ) = 1, L1(τ ) = τ , (2a)

Ln+1(τ ) = (2n + 1)τ Ln(τ ) − nLn−1(τ )

n + 1
, n = 1,2, . . . , (2b)

which yields an efficient and stable way to evaluate the Legendre polynomials of arbitrary order at any τ ∈ [−1, +1].

3. Definitions and computation of LIMs

In this section, the definitions and computation of LIMs for the LG and FLGR points are presented, respectively.

3.1. Definitions of LIMs

Definition 1. The LIM of order � ≥ 1 for the LG points of {τi ∈ (−1, +1)}N
i=1 with −1 = τ0 < τ1 < · · · < τN+1 = +1 is defined 

as

L�
kj �

τk∫
−1

σ�∫
−1

· · ·
σ3∫

−1

σ2∫
−1︸ ︷︷ ︸

�

L j(σ1)dσ1dσ2 · · · dσ�−1dσ�,

(k = 1,2, . . . , N + 1, j = 0,1, . . . , N − 1).

(3)

Definition 2. The LIM of order � ≥ 1 for the FLGR points of {τ̂i ∈ (−1, +1]}N
i=1 with −1 = τ̂0 < τ̂1 < · · · < τ̂N = +1 is defined 

as

L̂
�

kj �
τ̂k∫

−1

σ�∫
−1

· · ·
σ3∫

−1

σ2∫
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�

L j(σ1)dσ1dσ2 · · · dσ�−1dσ�,

(k = 1,2, . . . , N, j = 0,1, . . . , N − 1).

(4)

3.2. Computation of LIMs

Now, we present an efficient and stable approach to computing the LIMs defined above. The main results are given in 
the following theorem.

Theorem 1. The LIM of order � ≥ 2 for the LG points {τi}N
i=1 can be computed exactly as

L�
kj =

⎧⎨
⎩

L�−1
k1 + L�−1

k0 , j = 0

1
2 j+1

(
L�−1

k, j+1 − L�−1
k, j−1

)
, j ≥ 1

, (5)

where
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