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In this paper, we study a fast algorithm for finding stationary joint probability distributions 
of sparse Markov chains or multilinear PageRank vectors which arise from data mining 
applications. In these applications, the main computational problem is to calculate and 
store solutions of many unknowns in joint probability distributions of sparse Markov 
chains. Our idea is to approximate large-scale solutions of such sparse Markov chains by 
two components: the sparsity component and the rank-one component. Here the non-zero 
locations in the sparsity component refer to important associations in the joint probability 
distribution and the rank-one component refers to a background value of the solution. 
We propose to determine solutions by formulating and solving sparse and rank-one 
optimization problems via closed form solutions. The convergence of the truncated power 
method is established. Numerical examples of multilinear PageRank vector calculation and 
second-order web-linkage analysis are presented to show the efficiency of the proposed 
method. It is shown that both computation and storage are significantly reduced by 
comparing with the traditional power method.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

One of the core and important research problems in information retrieval is to evaluate the importance or popularity 
of objects that can assist to handle many data mining tasks [2,8,10,11,16]. For instance, we employ ranking for the input 
query in a search engine, finding genes relevant to disease or extracting relevant communities in a social network, see 
[2,10,15,18,23,25]. For a detailed discussion, see the recent survey paper [8]. The PageRank algorithm [20] developed by 
Google is well-known and useful to determine the importance of nodes in a directed graph which is used to represent the 
World Wide Web and its hyperlinks among webpages. For other applications of Markov chains, we refer to [3,7,17,22,28]. 
Mathematically, it is interesting to note that the PageRank algorithm is used to compute a stationary probability distribution 
x = [x1, x2, · · · , xn]� (� denotes the transpose of a vector) of a modified first-order Markov chain with n states arising from 
a graph of n nodes [11,20]:
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x = βPx + (1 − β)g, or xi = β

n∑
j=1

pi, jx j + (1 − β)gi, (1)

where P = [pi, j] is the given transition probability matrix (stochastic matrix) arising from the first-order Markov chain (all 
the entries pi, j are non-negative and each column sum of P is equal to one), g = [g1, g2, · · · , gn]� is the given probability 
vector for the associated nodes [20], and β is a positive number in (0, 1]. When β = 1, Equation (1) is equivalent to solving 
a stationary probability distribution for a first-order Markov chain. When P is irreducible, the solution x is unique and its 
entries xi are always positive [1]. For β < 1, it can be interpreted that a random walker iteratively visits from the current 
i-th node to the other nodes according to this probability vector: β[pi,1, pi,2, · · · , pi,n]� + (1 − β)[g1, g2, · · · , gn]� . The 
probabilities are related to the transition probability matrix and the given probability vector for the associated nodes. The 
random walker has the steady state probabilities that will finally stay at different nodes. The corresponding solution x is 
also unique, see [10,23].

1.1. Sparse second-order Markov chains

The main objective of this paper is to study efficient solution methods for the computation of stationary joint probabili-
ties of sparse second-order Markov chains/multilinear PageRank:

xi, j = β

n∑
k=1

pi, j,kx j,k + (1 − β)gi, j, i, j = 1,2, . . . ,n. (2)

The quantity pi, j,k represents the probability that the process will make a transition to the i-th node given that currently 
the process is in the j-th node and the process was in the k-th node previously. Also gi, j is the given probability for 
the associated i-th and j-th nodes [9,20]. It is interesting to note in many practical applications that there may be many 
pi, j,k equal to zero. For instance, when we study the citation ranking among researchers in a publication community, 
second-order transition probabilities can be constructed by using their successive citations [14,19]. As a researcher may 
not cite the papers written by other researchers in the whole community especially when the number of researchers (n) 
is very large, we expect many pi, j,k would be zero. Here the i-th researcher cites the k-th researcher via the citation by 
the j-th researcher. For example, when we study successive links of webpages in World Wide Web, second-order transition 
probabilities can be constructed that the i-th webpage is linked to the k-th webpage via the j-th webpage. We expect 
most of these probabilities are zero especially when the number of webpages is very large. The technique for handling 
dangling states has been considered in [9,14,19], see Section 2.2. Moreover, there are many zeros in gi, j in these applications. 
For example, we target for some specific query keywords, publications and researchers in communities [21], and we only 
set a few relevant keywords, publications and researchers in multilinear PageRank applications in which they refer the 
corresponding non-zeros in gi, j .

We note that any second-order Markov chain with n nodes, i.e., β = 1 in (2), can be reformulated into an n2-by-n2 linear 
system. The block form of the equations can be described as follows:⎡

⎢⎢⎢⎣
x1, j
x2, j
...

xn, j

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

p1, j,1 p1, j,2 · · · p1, j,n
p2, j,1 p2, j,2 · · · p2, j,n

...
...

. . .
...

pn, j,1 pn, j,2 · · · pn, j,n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x j,1
x j,2
...

x j,n

⎤
⎥⎥⎥⎦ , j = 1,2, · · · ,n, (3)

or

X(:, j) = P jX( j, :)�, j = 1,2, · · · ,n.

We remark that the left hand side vector X(:, j) is different from X( j, :)� and therefore the linear system is not separable 
in each block. By adopting Matlab notations, X(:, j) is the j-th column of X and X( j, :) is the j-th row of X. Also X( j, :)� is 
the transpose of X( j, :) and X( j, :)� is a column vector. It is clear that the column summation of P j is equal to 1, i.e., P j is 
a stochastic matrix.

If the corresponding transition probability matrix in the above equation arising from a second-order Markov chain is 
irreducible, then the stationary joint probability distribution X is unique. Similar to (1), we can deal with the case of 
modified higher-order Markov chains for multilinear PageRank applications. A detailed discussion can be found in [9]. The 
main computational problem is to calculate and store an n-by-n matrix X. According to (2), X can be obtained by solving 
a matrix system where its size is n2-by-n2. For example, when n = 10000, the matrix size would be of hundred million 
by hundred million, and the solution would have hundred million unknowns. Indeed, many large-scale applications can 
be found in web analysis, publication networks, social networks and bioinformatics, see for instance [8,14,15,19]. In these 
applications, n refers to the number of webpages, the number of authors, the number of users, and the number of genes 
respectively that can be very large.
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