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The present article is dedicated to the solution of elliptic boundary value problems on ran-
dom domains. We apply a high-precision second order shape Taylor expansion to quantify 
the impact of the random perturbation on the solution. Thus, we obtain a representation 
of the solution with third order accuracy in the size of the perturbation’s amplitude. The 
major advantage of this approach is that we end up with purely deterministic equations 
for the solution’s moments. In particular, we derive representations for the first four mo-
ments, i.e., expectation, variance, skewness and kurtosis. These moments are efficiently 
computable by means of boundary integral equations. Numerical results are presented to 
validate the presented approach.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Often, practical problems from science and engineering result in the task of solving a boundary value problem for an 
unknown function. The numerical solution of such boundary value problems is in general well understood, at least if the 
problem’s input parameters are known exactly. Often, however, the input parameters are not known exactly. Hence, the 
challenge is to obtain high-precision approximations also in the presence of uncertainties. Typically, random input parame-
ters are then modeled in terms of random fields and, as a consequence, the given boundary value problem is turned into 
a random one. This yields a solution which is a random field itself. In this article, to keep the presentation simple for the 
reader’s convenience, we shall consider the Dirichlet problem for the Poisson equation which is formulated relative to a 
random domain:

−�u(ω) = f in D(ω), u(ω) = g on ∂ D(ω). (1)

Here, D(ω) denotes the domain under consideration with boundary ∂ D(ω) which both depend on the random parameter 
ω ∈ �. Of course, this problem can be easily extended for the case of more complex data, as for example a more complex 
diffusion coefficient, cf. [16]. The idea of taking random computational domains into account is inspired by tolerances in the 
fabrication process of a mechanical device or by damages of the boundary which appear during the life cycle of a device. 
Typically, such devices are close to a nominal shape but differ of course from its mathematical definition. Since these 
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tolerances are in general small, we can also make the crucial assumption of the smallness of the random perturbations. 
Uncertainty quantification for computational domains arouses recently more interest, see [4,13,14,17,24,29].

By identifying domains with their boundary, a random domain D(ω), which is close to a given nominal domain D0 , can 
be described as a normal perturbation of this nominal boundary ∂ D0:

∂ D(ω) = {y ∈R
n : y(x) = x + ϕ(x,ω)n(x), x ∈ ∂ D0}. (2)

In this context, the random field ϕ(ω) : ∂ D0 → R is a scalar function which is defined with respect to the nominal boundary 
∂ D0. It uniquely determines the domain perturbation via ϕ(ω)n : ∂ D0 → R

n , with n denoting the outward normal to the 
domain D0.

The most simple methodology to deal with randomness in numerical computations is the Monte-Carlo method, cf. 
[22,27]. Here, numerous draws of the random input data are sampled according to some a-priori known or empirical dis-
tribution. Each draw entails the computation of a deterministic boundary value problem. Then, the statistics like the mean 
and the variance of these samples are formed. Nevertheless, for boundary value problems on random domains, each sample 
implies a new domain and thus a new mesh, the assembly of new mass and stiffness matrices, etc. Therefore, the Monte-
Carlo method is extremely costly and rather difficult to implement for the problem at hand. Note that the same accounts 
for other more sophisticated quadrature techniques like the quasi-Monte Carlo quadrature, cf. [3], or sparse quadrature 
methods, cf. [2].

Thus, we aim here at a different approach, namely the perturbation approach, see [1,13,14,17,20,21]. It facilitates to 
approximate the random solution on an arbitrary compactum inside the fixed nominal domain D0. The pivotal idea of the 
perturbation approach for random boundary value problems is the expansion of the underlying random field around the 
related input parameter’s expectation, in our case the domain D0, via a (shape-) Taylor expansion. For the boundary value 
problem (1) at hand, this will involve shape calculus, cf. [7,25,28]. With the help of the shape Taylor expansion, we can 
derive asymptotic expansions of the random output’s expectation, variance and also higher order moments.

More precisely, we employ a second order shape Taylor expansion and derive corresponding asymptotic expansions for 
the first four moments. These can be computed explicitly under the finite noise assumption. This means, the random domain 
perturbation in (2) is of the form

ϕ(x,ω) =
N∑

i=1

ϕi(x)Yi(ω) (3)

with centered random variables Yi : � → [−1, 1] which are independent and identically distributed, see [29,5].
As we will show, in the setting (3), i.e., having N terms in the series expansion of the random perturbation field ϕn, the 

expectation and the variance can be computed with a computational cost of order O(N). The skewness and kurtosis can be 
computed with a computational cost of order O(N2).

We remark that a similar approach for scalar output functionals of partial differential equations on uncertain domains 
has already been considered in [6]. Such shape functionals can be linearized by means of shape calculus, which, in partic-
ular, involves the computation of the shape Hessian of the functional under consideration. However, employing the adjoint 
method, which is well-known in shape optimization, only the first order shape derivative of the partial differential equa-
tion under consideration has to be computed. Whereas, for the problem considered in the present article, also the second 
order shape derivative of the partial differential equation has to be computed. The latter is computationally much more 
demanding.

The rest of this article is organized as follows. In Section 2, we introduce the basic ideas of shape calculus and derive the 
asymptotic expansions for the random solution’s statistics. Then, in Section 3, we propose a way to compute these expan-
sions by means of a boundary element method. Numerical results are presented in Section 4. Finally, we state concluding 
remarks in Section 5.

2. Perturbation analysis

To avoid the extreme high-dimensionality of a direct discretization of (1) by means of the domain mapping method, 
see e.g. [29], which is driven by the size N of the expansion (3), a technique can be applied which is mainly known from 
shape sensitivity analysis, namely the so-called local shape derivative, see [8,26]. It has been established as a measure of the 
solution’s dependence on domain or boundary perturbations. Such shape derivatives are in principle known since Hadamard, 
cf. [12] and nowadays well established in shape optimization, see [7,18,25,28]. Since the solution’s nonlinear dependence 
on the shape of the domain is Fréchet differentiable, we can linearize it around the nominal domain D0 . Thus, deterministic 
expressions for the solution’s statistics can be derived.

2.1. Shape calculus

Consider a sufficiently smooth domain D0 and a boundary variation in the direction of the outward normal n:

ϕn : ∂ D0 →R
n such that ‖ϕ‖C2,1(∂ D0) ≤ 1.
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