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A discrete divergence free weak Galerkin finite element method is developed for the Stokes 
equations based on a weak Galerkin (WG) method introduced in [17]. Discrete divergence 
free bases are constructed explicitly for the lowest order weak Galerkin elements in two 
and three dimensional spaces. These basis functions can be derived on general meshes 
of arbitrary shape of polygons and polyhedrons. With the divergence free basis derived, 
the discrete divergence free WG scheme can eliminate pressure variable from the system 
and reduces a saddle point problem to a symmetric and positive definite system with 
many fewer unknowns. Numerical results are presented to demonstrate the robustness and 
accuracy of this discrete divergence free WG method.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Stokes problem seeks unknown functions u and p satisfying

−∇ · A∇u + ∇p = f in �, (1.1)

∇ · u = 0 in �, (1.2)

u = g on ∂�, (1.3)

where � is a polygonal domain in Rd with d = 2, 3 and A is a symmetric and positive definite d × d matrix-valued function 
in �.

The weak form in the primary velocity-pressure formulation for the Stokes problem (1.1)–(1.3) seeks u ∈ [H1(�)]d and 
p ∈ L2

0(�) satisfying u = g on ∂� and
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(A∇u,∇v) − (∇ · v, p) = (f,v), ∀v ∈ [H1
0(�)]d, (1.4)

(∇ · u,q) = 0, ∀q ∈ L2
0(�). (1.5)

In the standard finite element methods for the Stokes and the Navier–Stokes equations, both pressure and velocity are 
approximated simultaneously. The primitive system is a large saddle point problem. Numerical solvers for such indefinite 
systems are usually less effective and robust than solvers for definite systems. On the other hand, the divergence-free finite 
element method, discrete or exact, computes numerical solution of velocity by solving a symmetric positive definite system 
in a divergence-free subspace. It eliminates the pressure from the coupled equations and hence significantly reduces the size 
of the system. The divergence-free method is particularly attractive in the cases where the velocity is the primary variable 
of interest, for example, the groundwater flow calculation. The main tasks in the implementation of the divergence-free 
method are to understand divergence-free subspaces, weakly or exactly, and to construct bases for them.

Many finite element methods, continuous [3,4,9] and discontinuous [2,5,13,14,18], have been developed and analyzed 
for the Stokes and the Navier–Stokes equations. Divergence-free basis for different finite element methods have been con-
structed [1,6–8,10–12,19–21].

A weak Galerkin finite element method was introduced in [17] for the Stokes equations in the primal velocity-pressure 
formulation. This method is designed by using discontinuous piecewise polynomials on finite element partitions with ar-
bitrary shape of polygons/polyhedra. Weak Galerkin methods were first introduced in [15,16] for second order elliptic 
equations. In general, weak Galerkin finite element formulations for partial differential equations can be derived natu-
rally by replacing usual derivatives by weakly-defined derivatives in the corresponding variational forms, with an option 
of adding a stabilization term to enforce a weak continuity of the approximating functions. Therefore the weak Galerkin 
method developed in [17] for the Stokes equations naturally has the form: find uh ∈ Vh and ph ∈ Wh satisfying uh = Q bg
on ∂� and

(A∇w uh,∇w v) + s(uh,v) − (∇w · v, ph) = (f,v), (1.6)

(∇w · uh,q) = 0 (1.7)

for all the test functions v ∈ V 0
h and q ∈ Wh where Vh and Wh will be defined later. The stabilizer s(uh, v) in (1.6) is 

parameter independent.
Let Dh be a discrete divergence free subspace of V 0

h such that (∇w ·v, q) = 0 for any q ∈ Wh . Then the discrete divergence 
free WG formulation is to find uh satisfying uh = Q bg on ∂� and

(A∇w uh,∇w v) + s(uh,v) = (f,v), ∀v ∈ Dh. (1.8)

System (1.8) is symmetric and positive definite with many fewer unknowns. The main purpose of this paper is to construct 
bases for Dh in two and three dimensional spaces. A unique feature of these divergence free basis functions is that they 
can be obtained on general meshes such as hybrid meshes or meshes with hanging nodes. Numerical examples in two 
dimensional space are provided to confirm the theory. Although the Stokes equations is considered, the divergence free 
basis can be used for solving the Navier–Stokes equations.

2. A weak Galerkin finite element method

In this section, we will review the WG method for the Stokes equations introduced in [17] with k = 1.
Let Th be a partition of the domain � consisting of a set of polyhedra satisfying a set of conditions specified in [16]. In 

addition, we assume that all the elements T ∈ Th are convex. Denote by Fh the set of all edges in 2D or faces in 3D in Th , 
and let F0

h =Fh\∂� be the set of all interior edges or faces.
The weak Galerkin methods introduce a new way to define a function v , called weak function, that allows v taking 

different forms in the interior and on the boundary of the element:

v =
{

v0, in T 0,

vb, on ∂T ,

where T 0 is the interior of T . Since a weak function v is formed by two parts v0 and vb , we write v as v = {v0, vb} in 
short without confusion.

We define a finite element space consisting of these weak functions for the velocity as follows

Vh =
{

v = {v0,vb} : v0|T ∈ [P1(T )]d, vb|e ∈ [P0(e)]d, e ⊂ ∂T ,∀T ∈ Th

}
.

Please note that vb takes single value on e ∈ Fh .
We define two subspaces of Vh ,

V 0
h = {v = {v0,vb} ∈ Vh : vb = 0 on ∂�} .
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