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Based on the weighted and shifted Grünwald–Letnikov difference operator, a new high-
order block-centered finite difference method is derived for the time-fractional advection–
dispersion equation by introducing an auxiliary flux variable to guarantee full mass 
conservation. The stability and the global convergence of the scheme are proved rigorously. 
Some a priori estimates of discrete norms with optimal order of convergence O (�t3 +
h2 + k2) both for solute concentration and the auxiliary flux variable are established on 
non-uniform rectangular grids, where �t, h and k are the step sizes in time, space in x-
and y-direction. Moreover, the applicability and accuracy of the scheme are demonstrated 
by numerical experiments to support our theoretical analysis.

© 2017 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

An advection–dispersion equation (ADE) has extensively been used to describe the Brownian motion of particles [20]. 
ADE describes the change of probability of a random function in space and time, hence it is naturally and commonly used 
to describe solute transport. A particle’s motion has little or no spatial correlation, which is the most significant assumption 
underlying a Fickian diffusion process or equivalently a process of Brownian motion. Solutes moving through subsurface 
aquifers do not necessarily follow a Fickian process because large deviations from the stochastic process of Brownian motion 
are emerged due to the strong heterogeneity of the porous media [2].

It is well known that differential equations involving derivatives of non-integer order have demonstrated to be adequate 
models for various physical phenomena in areas like rheology, damping laws, diffusion processes, etc. At present, there is 
a large number of theoretical and applied works devoted to the research of fractional differential equations [3–5,12,17,24]. 
Recent studies show that fractional advection–diffusion equations demonstrate more effective and accurate description of 
the movement of solute in an aquifer than the traditional second-order advection–diffusion equations do. The fractional 
advection–dispersion equation is a generalization of the classical advection–dispersion equation. An Eulerian derivation of 
this equation has been studied by Schumer et al. [25] and it is demonstrated that highly skewed, non-Gaussian contami-
nant plumes with heavy leading edges can be a result of the infinite-variance particle jump distributions that arise during 
transport in a disordered porous medium. Zhang and his coauthors [29] developed the impact of boundary on the fractional 
advection–dispersion equation for solute transport in soil. The solution of its Cauchy problem in terms of the Green func-
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tions and the representations of the Green function by applying its Fourier–Laplace transforms for the space–time fractional 
advection–dispersion equation are derived by Huang and Liu in [7].

The numerical approximations for the fractional advection–dispersion equation are studied by many authors. Zhuang 
et al. [31] presented the implicit Euler approximation and some other numerical methods for the variable-order fractional 
advection–diffusion equation with a nonlinear source term. Effective implicit numerical methods have been demonstrated 
for a class of fractional advection–dispersion models in [15]. Wang and his coauthor developed a fast characteristic finite 
difference method in [28].

Fractional derivatives are nonlocal and they have the character of history dependence, which implies a high storage 
requirement. Thus, there are more and more attentions to develop high-order numerical methods which can reduce the 
storage requirement and computational complexity. The L1 approximation formula to discretize the Caputo fractional deriva-
tive is modified by Gao and his coauthors and shown that the order of local truncation error is 3 − α for 0 < α < 1, but 
it is not provided a rigorous theoretical analysis about the stability and convergence of the obtained difference scheme [6]. 
Recently, Deng and his coauthors [9,26] have presented some high-order approximations to discretize the fractional deriva-
tives by assembling the Grünwald–Letnikov difference operator with different weights and shifts. Following this idea, Ji and 
Sun [8] provided a third-order accuracy formula to approximate the time-fractional derivatives and established a compact 
finite difference scheme for solving the fractional sub-diffusion equation. A high-order local discontinuous Galerkin method 
combined with weighted and shifted Grünwald–Letnikov difference approximation is developed and discussed for a Caputo 
time-fractional subdiffusion equation in [14].

Block-centered finite differences, sometimes called cell-centered finite differences, can be thought as the lowest order 
Raviart–Thomas mixed element method [19], with proper quadrature formulation. The application of the block-centered 
finite difference enables us to approximate both solute concentration and the auxiliary flux with second-order accuracy on 
non-uniform rectangular grids to obtain the superconvergence analysis. In [1], Wheeler presents the mixed finite elements 
for elliptic problems with tensor coefficients as cell-centered finite differences. And in 2012, a block-centered finite differ-
ence method for the Darcy–Forchheimer model is considered [22]. Besides, in [10,11,21,23] block-centered finite difference 
methods are developed to solve linear and nonlinear equations. Recently, a parallel CGS block-centered finite difference 
method for a nonlinear time-fractional parabolic equation has been studied [13].

As far as we know, there is no high-order block-centered finite difference method for the time-fractional advection–
dispersion equation with the Neumann boundary condition on non-uniform rectangular grids. The main goal of this paper 
is to construct a high-order fully conservative block-centered finite difference method for the time-fractional advection–
dispersion equation and establish the corresponding stability and error estimates. The method follows the idea of the 
weighted and shifted Grünwald–Letnikov difference operators [8,14,27]. By choosing shifts (p, q, r) = (0, −1, −2) and utiliz-
ing the equivalence of Riemann–Liouville derivative and Caputo derivative under some regularity assumptions, a third-order 
accuracy formula to approximate Caputo fractional derivative is derived. Furthermore, the stable result, which just depends 
on initial value and source item, is derived. Besides, we demonstrate that the block centered finite difference scheme has 
(�t3 + h2 + k2) accuracy both for the original unknown, called solute concentration, and the introduced auxiliary flux vari-
able, in discrete L2 norms on non-uniform rectangular grid. These error estimates are superconvergence. The key step to 
the superconvergence analysis, is to construct a proper relation between the auxiliary flux variable q and the difference of 
the concentration u. Then some numerical examples are carried to show the accuracy of the presented block-centered finite 
difference scheme.

The paper is organized as follows. In Sect. 2, we give the problem and some notations. In Sect. 3, we present the 
block-centered finite difference method. Then in Sect. 4, we present the analysis of stability and error estimates for the 
presented method. Some numerical experiments using the block-centered finite difference scheme are carried out in Sect. 5.

Through out the paper we use C , with or without subscript, to denote a positive constant, which could have different 
values at different appearances.

2. The problem and some notations

In this section, we first describe the problem of the time-fractional advection–dispersion equation (see [15,31]) with the 
Neumann condition in this paper, and present some notations which will be found helpful in the following analysis.

Find u = u(x, y, t) such that

C
0 Dα

t u + ∇ · (v(x, y, t)u) − ∇ · (a(x, y, t)∇u) = f , (x, y, t) ∈ � × J ,

with Neumann boundary condition

(v(x, y, t)u − a(x, y, t)∇u) · n = 0, (x, y, t) ∈ ∂� × J ,

and initial condition

u |t=0= u0(x, y), (x, y) ∈ �.
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