Some distance magic graphs

Aloysius Godinho*, T. Singh
Department of Mathematics, Birla Institute of Technology and Science Pilani, K K Birla, Goa Campus, NH-17B, Zuarinagar, Goa, India

Received 24 January 2017; received in revised form 16 February 2018; accepted 21 February 2018
Available online 24 April 2018

Abstract

A graph $G=(V, E)$, where $|V|=n$ and $|E|=m$ is said to be a distance magic graph if there exists a bijection from the vertex set V to the set $\{1,2, \ldots, n\}$ such that, $\sum_{v \in N(u)} f(v)=k$, for all $u \in V$, which is a constant and independent of u, where $N(u)$ is the open neighborhood of the vertex u. The constant k is called the distance magic constant of the graph G and such a labeling f is called distance magic labeling of G. In this paper, we present new results on distance magic labeling of C_{n}^{r} and neighborhood expansion $D_{n}(G)$ of a graph G. © 2018 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Distance magic labeling; Sigma labeling; Circulant graphs

1. Introduction

For standard terminology and notation in graph theory we follow Harary [1]. Also, unless mentioned otherwise, all graphs considered here are simple, finite, without loops and multiple edges.

The concept of distance magic labeling of a graph was motivated by the construction of magic squares. Suppose, we have a magic square consisting of n rows and m columns and each row sum is k. Consider a complete multipartite graph with each row of the magic square representing a partite set and we label each vertex with the corresponding integer in the magic square. We find that the sum of the labels of all the vertices at distance 1 (i.e., an open neighborhood set of vertices) for each vertex is the same and is equal to $(n-1) k$.

Let $G=(V, E)$ be a graph with n vertices and m edges. Let f be a bijection from the vertex set $V(G)$ onto the set $\{1,2, \ldots, n\}$ such that for every vertex $u, w(u)=\sum_{u v \in E(G)} f(v)=k$ which is a constant and independent of u. This constant value k is called the distance magic constant of the graph G, then f is called a distance magic labeling of G and the graph which admits such a labeling is called a distance magic graph.

The concept was introduced by Vilfred [2] as sigma labeling of graph and further developed by Jinnah [3] and Vilfred [4] (see also, [5,6]). This concept was independently studied by Simanjuntak, Rodgers and Miller [7] who used the terminology 1-vertex magic vertex labeling. The same concept was introduced independently in more general

[^0]way as neighborhood magic labeling by Acharya et al. [8]. A survey on distance magic labelings is given in [6]. The following results are known in the literature (see also [9]).

Theorem 1.1 ([4]). Let G be a distance magic graph of order n with magic constant k. Let $f: V(G) \rightarrow\{1,2, \ldots, n\}$ be a distance magic labeling of G. Let $d\left(u_{i}\right)$ denote the degree of the vertex u_{i}, then $\sum_{i=1}^{n} f\left(u_{i}\right) d\left(u_{i}\right)=n k$.

Corollary 1.2 ([4]). Let G be a r-regular distance magic graph on n vertices. Then the distance magic constant $k=\frac{r(n+1)}{2}$.

Corollary 1.3 ([4]). No r-regular graph with r odd can be a distance magic graph.
Theorem 1.4 ([8]). Every graph is a subgraph of a distance magic graph.
Theorem 1.5 ([8]). The graph $P_{n} \square C_{k}$ is not a distance magic graph when n is odd.
Theorem $1.6([10]) . C_{n} \square C_{k}$ is distance magic if and only if $n=k \equiv 2(\bmod 4)$.
In [10], Rao et al. posed the following problems:
Problem 1.7. Characterize 4-regular distance magic graphs.
Problem 1.8. Find all distance magic labelings of $C_{n} \square C_{k}, n=k \equiv 2(\bmod 4)$.
Fronćek et al. [11] proved the following result on 4-regular distance magic graphs:
Theorem 1.9. There exists a 4-regular distance magic graph on an odd number of vertices n if and only if $n \geq 17$.
Let n and r be positive integers such that $n \geq 3$ and $r \leq \frac{n-1}{2}$. The graph C_{n}^{r} is a graph on n vertices $\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$ with the edge set $E\left(C_{n}^{r}\right)=\left\{u_{i} u_{i+j}: 0 \leq i \leq n-1,1 \leq j \leq r\right\}$. The index i in u_{i} is assumed to be taken modulo n. Notice from the above definition that the graph C_{n}^{r} is $2 r$-regular. The problem of obtaining necessary and sufficient conditions for existence of distance magic labeling for the graph C_{n}^{r} has been studied by Cichacz [12]. She proved the following results.

Theorem 1.10. If r is odd, the graph C_{n}^{r} is distance magic if and only if $2 r(r+1) \equiv 0(\bmod n), n \geq 2 r+2$ and $\frac{n}{\operatorname{gcd}(n, r+1)} \equiv 0(\bmod 2)$.

Theorem 1.11. If C_{n}^{r} is distance magic then n is even.
In this paper we shall discuss the distance magic labeling of C_{n}^{r} when r is even and the neighborhood expansion $D_{n}(G)$ of the graph G.

2. Distance magic labeling of $\boldsymbol{C}_{\boldsymbol{n}}^{\boldsymbol{r}}$

We denote the vertex set of C_{n}^{r} by $V\left(C_{n}^{r}\right)=\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}$, such that the vertex u_{i} is adjacent to the set of vertices $\left\{u_{i+j}, u_{i-j}: 1 \leq j \leq r\right\}$. For a bijection $f: V\left(C_{n}^{r}\right) \rightarrow\{1,2, \ldots, n\}$, we shall use the notation f_{i} to denote the label of u_{i} i.e $f\left(u_{i}\right)=f_{i}$. The index i in u_{i} and f_{i} are assumed to be taken modulo n.

Suppose the graph C_{n}^{r} is distance magic. From Corollary 1.2 it follows that the distance magic constant of C_{n}^{r} is $r(n+1)$. Hence if f is a distance magic labeling and $u_{i} \in V$, the weight of u_{i} is $w\left(u_{i}\right)=\sum_{j=1}^{r}\left(f_{i+j}+f_{i-j}\right)=r(n+1)$.

Lemma 2.1. If C_{n}^{r} is distance magic, then for any $u_{i} \in V\left(C_{n}^{r}\right)$ and $\lambda \in \mathbb{Z}$,

$$
\begin{equation*}
f_{i}+f_{i+r+1}=f_{i+\lambda r}+f_{i+(\lambda+1) r+1} . \tag{1}
\end{equation*}
$$

https://daneshyari.com/en/article/8902729

Download Persian Version:

https://daneshyari.com/article/8902729

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: p20140001@goa.bits-pilani.ac.in (A. Godinho), tksingh@goa.bits-pilani.ac.in (T. Singh).

