Results on Laplacian spectra of graphs with pockets

Sasmita Barik*, Gopinath Sahoo
School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, 751007, India

Received 1 January 2017; received in revised form 21 November 2017; accepted 21 November 2017
Available online xxxx

Abstract

Let F, H_{v} be simple connected graphs on n and $m+1$ vertices, respectively. Let v be a specified vertex of H_{v} and $u_{1}, \ldots, u_{k} \in F$. Then the graph $G=G\left[F, u_{1}, \ldots, u_{k}, H_{v}\right]$ obtained by taking one copy of F and k copies of H_{v}, and then attaching the i th copy of H_{v} to the vertex $u_{i}, i=1, \ldots, k$, at the vertex v of H_{v} (identify u_{i} with the vertex v of the i th copy) is called a graph with k pockets. In 2008, Barik raised the question that 'how far can the Laplacian spectrum of G be described by using the Laplacian spectra of F and H_{v} ?' and discussed the case when $\operatorname{deg}(v)=m$ in H_{v}. In this article, we study the problem for more general cases and describe the Laplacian spectrum. As an application, we construct new nonisomorphic Laplacian cospectral graphs from the known ones. © 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Laplacian matrix; Laplacian spectrum; Join; Pockets

1. Introduction

Throughout this article we consider only simple graphs. Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)=$ $\{1,2, \ldots, n\}$ and edge set $E(G)$. The adjacency matrix of G, denoted by $A(G)$, is the $n \times n$ matrix whose (i, j)-th entry is 1 , if i and j are adjacent in G and 0 , otherwise. The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$, where $D(G)$ is the diagonal degree matrix of G. It is well known that $L(G)$ is a symmetric positive semidefinite matrix. Throughout this paper the Laplacian spectrum of G is defined as $\sigma(G)=\left(\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)\right)$, where $\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G)$ are the eigenvalues of $L(G)$ arranged in nondecreasing order. For any graph G, $\lambda_{1}(G)=0$ and is afforded by the all ones eigenvector $\mathbf{1}$. There is an extensive literature on works related to Laplacian matrices and their spectra. Interested readers are referred to $[1,2]$ and the references therein.

Two graphs are said to be Laplacian cospectral if they share same Laplacian spectrum. Haemers and Spence [3] enumerated the numbers for which there are at least two graphs with the same Laplacian spectrum and gave some techniques for their construction.

[^0]From literature we find many operations defined on graphs such as disjoint union, complement, join, graph products (Cartesian product, direct product, strong product, lexicographic product, etc.), corona and many variants of corona (like edge corona, neighborhood corona, edge neighborhood corona, etc.). For such operations often it is possible to describe the Laplacian spectrum of the resulting graph using the Laplacian spectra of the corresponding constituting graphs, see $[4,5]$ for reference. This enables one to visualize a complex network in terms of small simple recognizable graphs whose Laplacian spectra is easily computable. It is always interesting for researchers in spectral graph theory to define some new graph operations such that the Laplacian spectra of the new graphs produced can be described using the Laplacian spectra of the constituent graphs.

If $F=(V(F), E(F))$ and $H=(V(H), E(H))$ are two graphs on disjoint sets of m and n vertices, respectively, their union is the graph $F+H=(V(F) \cup V(H), E(F) \cup E(H))$, and their join is $F \vee H=\left(F^{c}+H^{c}\right)^{c}$, the graph on $m+n$ vertices obtained from $F+H$ by adding new edges from each vertex of F to every vertex of H. Note that, here F^{c} denotes the complement graph of the graph F.

The following result which describes the Laplacian spectrum of join of two graphs is often used in the next sections.
Theorem 1 ([6], Theorem 2.1). Let F, H be graphs on disjoint sets of m, n, vertices respectively, and $G=F \vee H$. $\operatorname{Let} \sigma(F)=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ and $\sigma(H)=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$. Then $0, n+\lambda_{2}, \ldots, n+\lambda_{m}, m+\mu_{2}, \ldots, m+\mu_{n}, m+n \in$ $\sigma(G)$.

The following graph operation is defined in [7].
Definition 2 ([7]). Let F, H_{v} be connected graphs, v be a specified vertex of H_{v} and $u_{1}, \ldots, u_{k} \in F$. Let $G=G\left[F, u_{1}, \ldots, u_{k}, H_{v}\right]$ be the graph obtained by taking one copy of F and k copies of H_{v}, and then attaching the i th copy of H_{v} to the vertex $u_{i}, i=1, \ldots, k$, at the vertex v of H_{v} (identify u_{i} with the vertex v of the i th copy). Then the copies of the graph H_{v} that are attached to the vertices $u_{i}, i=1, \ldots, k$ are referred to as pockets, and G is described as a graph with pockets.

Suppose that F and H_{v} are graphs on n and $m+1$ vertices, respectively. Using the above operation, we can produce many interesting classes of graphs. Since the operation is a very general operation, in [7], the author has asked the question that 'how far can the Laplacian spectrum of G be described by using the Laplacian spectra of F and H_{v} ?'. In that paper, the author has described the Laplacian spectrum of G using the Laplacian spectra F and H_{v} in a particular case when $\operatorname{deg}(v)=m$. This motivates us for studying the Laplacian spectrum of more such graphs relaxing condition that $\operatorname{deg}(v)=m$. Let $\operatorname{deg}(v)=l, 1 \leq l \leq m$. In this case, we denote $G\left[F, u_{1}, \ldots, u_{k}, H_{v}\right]$ more precisely by $G\left[F, u_{1}, \ldots, u_{k} ; H_{v}, l\right]$. When $k=n$, we denote $G=G\left[F, u_{1}, \ldots, u_{k} ; H_{v}, l\right]$ simply by $G\left[F ; H_{v}, l\right]$.

Let $H=H_{v} \backslash\{v\}$. When $\operatorname{deg}(v)=m$, we have $H_{v}=\{v\} \vee H$. Now using Theorem 1, the Laplacian spectrum of H_{v} can be obtained from that of H. So the question of describing the Laplacian spectrum of G in terms of the Laplacian spectra of F and H_{v} is same as asking for the description of the Laplacian spectrum of G in terms of the Laplacian spectra of F and H. Further, when $l=m$ and $k=n$, we have $G\left[F ; H_{v}, m\right]=F \circ H$, the corona of F and H (see [8]). In [9], the Laplacian spectrum of $F \circ H$ has been completely described using the Laplacian spectra of F and H.

Now if $\operatorname{deg}(v)=l, 1 \leq l \leq m$, let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\} \subset V\left(H_{v}\right)$, be the neighborhood set of v in H_{v}. Let H_{1} be the subgraph of H_{v} induced by the vertices in $N(v)$ and H_{2} be the subgraph of H_{v} induced by the vertices which are in $V\left(H_{v}\right) \backslash(N(v) \cup\{v\})$. When $H_{v}=H_{1} \vee\left(H_{2}+\{v\}\right)$, we describe the complete Laplacian spectrum of $G\left[F ; H_{v}, l\right]$ using that of F and H. The results are contained in Section 2 of the article.

Further, except $n+2 k$ eigenvalues, we describe all other eigenvalues of $G\left[F, u_{1}, \ldots, u_{k} ; H_{v}, l\right]$ and prove that the remaining $n+2 k$ eigenvalues are independent of the graphs H_{1} and H_{2}. In particular, when $F=F_{1} \vee F_{2}$, where F_{1} is the subgraph of F induced by the vertices u_{1}, \ldots, u_{k}, we describe the complete Laplacian spectrum of $G\left[F, u_{1}, \ldots, u_{k} ; H_{v}, l\right]$. These results are contained in Section 3 .

Following notations are being used in rest of the paper. The $n \times 1$ vector with each entry 0 is denoted by $\mathbf{0}_{n}$. The Kronecker product of matrices $R=\left[r_{i j}\right]$ and S is defined to be the partitioned matrix $\left[r_{i j} S\right]$ and is denoted by $R \otimes S$. The vector with i th entry equal to 1 and all other entries zero is denoted by e_{i}. By $J_{n \times m}$ we denote the matrix of order $n \times m$ whose entries are all equal to 1 . If $n=m$, we write $J_{n \times m}$ simply by J_{n}. By I_{n} we denote the identity matrix of size n. We avoid writing the order of these matrices if it is clear from the context. K_{n} and C_{n} denote the complete graph and cycle graph of order n, respectively.

https://daneshyari.com/en/article/8902755

Download Persian Version:

https://daneshyari.com/article/8902755

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: sasmita@iitbbs.ac.in (S. Barik), gs13@iitbbs.ac.in (G. Sahoo).
 https://doi.org/10.1016/j.akcej.2017.11.004
 0972-8600/© 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

