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Abstract

For a graph Γ the algebraic connectivity denoted by a(Γ ), is the second smallest eigenvalue of the Laplacian matrix of Γ . In
Jiang et al. (2015), proved a unique graph with first minimum algebraic connectivity among the graphs which belong to a class of
graphs whose complements are trees. In this paper, we characterize the unique graph with second minimum algebraic connectivity
in the same aforesaid class of graphs.
c⃝ 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this work, we are concerned with simple, finite and undirected graphs. Let Γ = (V (Γ ), E(Γ )) be such a graph
with vertex set V (Γ ) = {v1, v2, . . . , vn} and edge set E(Γ ). The adjacency matrix A(Γ ) of Γ is a square matrix
of order n whose (i, j)-entry is unity if the vertices vi and v j are adjacent, and is zero otherwise. The eigenvalues
and eigenvectors of the adjacency matrix of a graph are called ordinary eigenvalues and eigenvectors and the theory
related to these eigenvalues and eigenvectors is usually referred to graph spectral theory which is well developed
nowadays, see [1,2].

The degree dΓ (vi ) of the vertex vi is the number of the first neighbors of this vertex in Γ . By D(Γ ), we denote
the square matrix of order n whose ith diagonal element is equal to di and whose off-diagonal elements are zero. The
Laplacian matrix of the graph Γ is

L(Γ ) = D(Γ ) − A(Γ ) . (1)
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For i ∈ {1, 2, 3, . . . , n}, the eigenvalues denoted by µi = µi (Γ ) and eigenvectors denoted by X i = X i (Γ ) of the
Laplacian matrix L(Γ ) are the Laplacian eigenvalues and the Laplacian eigenvectors of the graph Γ . Suppose that the
n-dimensional column-vectors X i ̸= 0 for i = 1, 2, . . . , n, then we have the following equality

L(Γ )X i = µi X i .

Since L(Γ ) is a symmetric and real matrix, the Laplacian eigenvalues are non-negative real numbers. Thus we can
arrange the Laplacian eigenvalues as µ1 ≥ µ2 ≥ · · · ≥ µn , where µn is a minimum Laplacian eigenvalue which is
always zero. The eigenvalue µn−1(Γ ) = a(Γ ) is called the algebraic connectivi t y of the graph Γ and it is a positive
value if and only if Γ is connected. Thus, the algebraic connectivity a(Γ ) is a good parameter to measure how well a
graph is connected and plays an important role in control theory and communications, and so forth. In particular, it is
related to the synchronization ability of complex network [3,4]. On the other hand it is related to the convergence speed
in networks; one important topic is to increase a(Γ ) as much as possible. There are several techniques to enhance this
metric; see [5].

The eigenvectors corresponding to a(Γ ) are called Fiedler vectors of Γ . For graph Γ the complement of Γ is
denoted by Γ c

= (V (Γ ), Ē(Γ )), where Ē(Γ ) = {xy : x, y ∈ V (Γ ), xy ̸∈ E(Γ )}. If Γ is a connected graph
and Γ c is its complement then every Laplacian eigenvector of Γ is a Laplacian eigenvector of Γ c [6]. The matrix
Q(Γ ) = D(Γ ) + A(Γ ) is called the signless Laplacian matrix of Γ . For further study, we refer [7,8].

A connected graph Γ with n vertices and m edges is called k − cyclic graph if m = n − 1 + k. In particular if
k = 0, then Γ is called a tree. Let Tn be the set of trees on n vertices. We denote by K1,n−1 the star graph on n vertices.
Define ℑn = {Γ : Γ is a tree of order n and Γ ≇ K1,n−1} and ℑ

c
n = {Γ c

: Γ ∈ ℑn}.
When the structures of graphs become complex comparatively to their complements, then we study the graphs by

studying their complements. Some following results are obtained in the spectral graph theory using this approach. Fan
et al. [9] characterized the unique graph with minimum least eigenvalue in the class of graphs ℑ

c
n . In the same class

whose complements are trees, Li and Wang [10] proved the unique graph whose signless Laplacian least eigenvalue
attains the minimum. Moreover, Yu and Fan [11,12] found two unique graphs whose least eigenvalue attains the
minimum in the class of graphs whose complements are connected and have no cut edges or cut vertices.

Recently, Jiang, Yu and Cao [13] studied the unique graph T (p, q) which has first minimum algebraic connectivity
among all the graphs which belong to ℑ

c
n , where T (p, q) is obtained from two disjoint stars K1,p(p ≥ 1) and

K1,q (q ≥ 1) by joining the center of K1,p to the center of K1,q with an edge. In this paper, for the same class, we
characterize the unique graph which has second minimum algebraic connectivity. The rest of the paper is organized
as follows: In Section 2, we present some basic definitions, notions and lemmas which are used in the main results
and Section 3 includes the main results related to the second minimum algebraic connectivity of the graphs whose
complements are trees.

2. Preliminaries

We begin with some definitions. For a graph Γ of order n, a vector X ∈ Rn is called to be defined on Γ , if there
exists a one–one map γ : V (Γ ) → X , simply written Xu = γ (u) for each u ∈ V (Γ ). If X is an eigenvector of
L(Γ ), then naturally X is defined on Γ , Xu denotes the entry of X corresponding to the vertex u. Such labelings are
sometimes called valuations of the vertices of Γ . One can easily find that, for an arbitrary vector X ∈ Rn ,

X T L(Γ )X =

∑
uv∈E(Γ )

(Xu − Xv)2, (2)

and when λ is a Laplacian eigenvalue of Γ corresponding to the eigenvector X then we have,

(dΓ (v) − λ)Xv =

∑
u∈NΓ (v)

Xu, for each vertex v ∈ V (Γ ), (3)

if and only if X ̸= 0. In the above equation NG(v) denotes the neighbor vertices of v ∈ Γ . Eq. (3) is called the
Laplacian eigenvalue-equation for the graph Γ .

Further by the well known Courant–Fisher theorem [14], for an arbitrary unit vector X ∈ Rn , when X ̸= 0 and
X ⊥ 1, then

a(Γ ) ≤ X T L(Γ )X, (4)
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