ARTICLE IN PRESS

Available online at www.sciencedirect.com

ScienceDirect

AKCE
International
Journal of
Graphs and
Combinatorics

AKCE International Journal of Graphs and Combinatorics ■ (■■■) ■■■■■

www.elsevier.com/locate/akcej

m-dominating *k*-ended trees of *l*-connected graphs

Masao Tsugaki^{a,*}, Guiying Yan^b

^a Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, Japan ^b Institute of mathematical and system sciences, Chinese Academy of Science, Beijing, PR China

> Received 29 August 2015; accepted 19 March 2017 Available online xxxxx

Abstract

Let $k \ge 2$, $l \ge 1$ and $m \ge 0$ be integers, and let G be an l-connected graph. If there exists a subgraph X of G such that the distance between v and X is at most m for any $v \in V(G)$, then we say that X m-dominates G. A subset S of V(G) is said to be 2(m+1)-stable if the distance between each pair of distinct vertices in S is at least 2(m+1). In this paper, we prove that if G does not have a 2(m+1)-stable set of order at least k+l, then G has an m-dominating tree which has at most k leaves.

© 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Vertex dominating; m-dominating; k-ended tree

1. Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple edges. Let G be a graph, and X be a subgraph or a vertex set of G. We write |X| for the order of X. For two vertices u and v of G, let $d_G(u,v)$ denote the distance between u and v. For a vertex v of G, the distance between v and X is defined to be the minimum value of $d_G(v,x)$ for all $x \in V(X)$ or $x \in X$, and denoted by $d_G(v,X)$. For an integer $m \geq 0$, let $Domi^m(X) := \{v \in V(G) : d_G(v,X) \leq m\}$. If $V(G) = Domi^m(X)$, then we say that X m-dominates G. For an integer $l \geq 2$, a subset S of V(G) is said to be l-stable if the distance between each pair of distinct vertices in S is at least l. The l-stable number of G is the cardinality of a maximum l-stable set of G, and is denoted by $\alpha^l(G)$, that is $\alpha^l(G) := \max\{|S| : S \subseteq V(G), S \text{ is } l$ -stable}. Note that $\alpha^2(G)$ is the independence number of G. A tree is called a k-ended tree if the number of leaves is at most k. In this paper, we investigate a stable number condition for l-connected graphs to have m-dominating k-ended trees. Concerning on this, the following three theorems are known.

Theorem 1 (Kano, Tsugaki and Yan [1]). Let $k \ge 2$ and $m \ge 0$ be integers, and let G be a connected graph. If $\alpha^{2(m+1)}(G) \le k$, then G has an m-dominating k-ended tree.

E-mail addresses: tsugaki@hotmail.com (M. Tsugaki), yangy@amss.ac.cn (G. Yan).

http://dx.doi.org/10.1016/j.akcej.2017.04.004

0972-8600/© 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Kalasalingam University.

^{*} Corresponding author.

M. Tsugaki, G. Yan / AKCE International Journal of Graphs and Combinatorics I (IIII) III-III

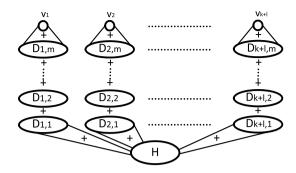


Fig. 1. An *l*-connected graph which has no *m*-dominating *k*-ended tree.

Theorem 2 (Broersma [2]). Let $l \ge 1$ and $m \ge 0$ be integers, and let G be an l-connected graph. If $\alpha^{2(m+1)}(G) \le l+1$, then G has an m-dominating path, that is an m-dominating 2-ended tree.

Theorem 3 (Win [3]). Let $k \ge 2$ and $l \ge 1$ be integers, and let G be an l-connected graph. If $\alpha^2(G) \le k + l - 1$, then G has a spanning k-ended tree, that is a 0-dominating k-ended tree.

In this paper, we prove the following theorem which is a generalization of above three theorems.

Theorem 4. Let $k \ge 2$, $l \ge 1$ and $m \ge 0$ be integers, and let G be an l-connected graph. If $\alpha^{2(m+1)}(G) \le k+l-1$, then G has an m-dominating k-ended tree.

The upper bound of the stable number condition of Theorem 4 is sharp. Let $k \ge 2$, $l \ge 1$ and $m \ge 1$ be integers. For $1 \le i \le k+l$, let $D_{i,1}, D_{i,2}, \ldots, D_{i,m}$ be disjoint copies of the complete graph K_l . For $1 \le j \le m-1$, join all the vertices of $D_{i,j}$ and all the vertices of $D_{i,j+1}$ by edges. Let v_i be a vertex not contained in $D_{i,1} \cup D_{i,2} \cup \cdots \cup D_{i,m}$, and join v_i and all the vertices of $D_{i,m}$ by edges. Let H be a complete graph of order l. For $1 \le i \le k+l$, join all the vertices of H and H and H are vertices of H and H and H are vertices of H and

Concerning on a degree sum condition, the following theorem is known.

Theorem 5 (Broersma [2]). Let $l \ge 1$ and $m \ge 0$ be integers, and let G be an l-connected graph. If $\sum_{x \in S} |Domi^m(x)| \ge |G| - l + 1$ for any 2(m+1)-stable set S of order l+2, then G has an m-dominating path, that is an m-dominating 2-ended tree.

By Theorem 4, we can obtain the following theorem which is a generalization of Theorem 5.

Theorem 6. Let $k \ge 2$, $l \ge 1$ and $m \ge 0$ be integers, and let G be an l-connected graph. If $\sum_{x \in S} |Domi^m(x)| \ge |G| - l + 1$ for any 2(m+1)-stable set S of order k+l, then G has an m-dominating k-ended tree.

Proof of Theorem 6. Suppose that G does not have an m-dominating k-ended tree. Then, by Theorem 4, $\alpha^{2(m+1)}(G) \ge k+l$, and hence there exists a 2(m+1)-stable set S of order |S| = k+l. Note that for any $x, y \in S$ with $x \ne y$, $Domi^m(x)$ and $Domi^m(y)$ are disjoint and there are no edge between them. Since G is l-connected, these imply that $|G| - \sum_{x \in S} |Domi^m(x)| \ge l$, which contradicts to the condition in Theorem 6. \square

2. Proof of Theorem 4

A *system* of a graph G is defined to be a set of vertex-disjoint paths and cycles of G. In this paper, we regard a vertex and an edge as a cycle, and thus a path means a path of order at least 3. Let S be a system of a graph G. For $S \in S$, we put f(S) := 2 if S is a path, and f(S) := 1 otherwise. Let $\mathcal{P}_S := \{S \in S : f(S) = 2\}$ and $\mathcal{C}_S := \{S \in S : f(S) = 1\}$. For $\mathcal{X} \subseteq S$ and an integer $m \geq 0$, we define $V(\mathcal{X}) := \bigcup_{X \in \mathcal{X}} V(X)$, $Domi^m(\mathcal{X}) := \bigcup_{X \in \mathcal{X}} Domi^m(X)$ and $f(\mathcal{X}) := \sum_{X \in \mathcal{X}} f(X)$. For an integer $k \geq 2$, we call \mathcal{X} a k-ended system if $f(\mathcal{X}) \leq k$. Note that $f(S) = 2|\mathcal{P}_S| + |\mathcal{C}_S|$.

2

Download English Version:

https://daneshyari.com/en/article/8902768

Download Persian Version:

https://daneshyari.com/article/8902768

<u>Daneshyari.com</u>