ARTICLE IN PRESS

Available online at www.sciencedirect.com

ScienceDirect

AKCE
International
Journal of
Graphs and
Combinatorics

AKCE International Journal of Graphs and Combinatorics ■ (■■■) ■■■■■■

www.elsevier.com/locate/akcej

Hybrid methods for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs

Raweerote Suparatulatorn^a, Suthep Suantai^a, Watcharaporn Cholamjiak^{b,*}

^a Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
^b School of Science, University of Phayao, Phayao 56000, Thailand

Received 6 June 2016; received in revised form 5 October 2016; accepted 21 January 2017

Available online xxxxx

Abstract

In this paper, we prove a strong convergence theorem for two different hybrid methods by using CQ method for a finite family of G-nonexpansive mappings in a Hilbert space. We give an example and numerical results for supporting our main results and compare the rate of convergence of the two iterative methods.

© 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Hybrid method; Fixed point; G-nonexpansive mapping; Directed graph

1. Introduction

Let H be a Hilbert space with the inner product $\langle ., . \rangle$, norm $\|.\|$ and C be a nonempty subset of H. A nonlinear mapping $T: C \to C$ is said to be

- 1. *contraction* if there exists $\alpha \in (0, 1)$ such that $||Tx Ty|| \le \alpha ||x y||$ for all $x, y \in C$;
- 2. nonexpansive if $||Tx Ty|| \le ||x y||$ for all $x, y \in C$.

The fixed point set of T is denoted by F(T), that is, $F(T) = \{x \in C : x = Tx\}$.

Since 1922, fixed point theorems and the existence of fixed points of a single-valued nonlinear mapping have been intensively studied and considered by many authors (see, for examples [1–7]).

In 1953, Mann [8] introduced the famous iteration procedure as follows:

$$x_1 \in C$$
, $x_{n+1} = \alpha_n x_n + (1 - \alpha_n) T x_n$, $\forall n \in \mathbb{N}$

where $\{\alpha_n\} \subset [0, 1]$ and \mathbb{N} the set of all positive integers. Many researchers have used Mann's iteration for obtaining weak convergence theorem (see for example [9–11]).

E-mail addresses: raweerote.s@gmail.com (R. Suparatulatorn), suthep.s@cmu.ac.th (S. Suantai), c-wchp007@hotmail.com (W. Cholamjiak).

http://dx.doi.org/10.1016/j.akcej.2017.01.001

0972-8600/© 2017 Kalasalingam University. Publishing Services by Elsevier B.V.. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Kalasalingam University.

^{*} Corresponding author.

2

In 2003, Nakajo and Takahashi [12] introduced a modification of the Mann iteration and called it CQ method. They generated the sequence $\{x_n\}$ by

$$\begin{cases} x_{0} = x \in C, \\ y_{n} = \alpha_{n}x_{n} + (1 - \alpha_{n})Tx_{n}, \\ C_{n} = \{z \in C : ||y_{n} - z|| \le ||x_{n} - z||\}, \\ Q_{n} = \{z \in C : \langle x_{n} - z, x_{0} - x_{n} \rangle \le 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, \quad n \ge 1, \end{cases}$$

$$(1.1)$$

for $n \in \mathbb{N} \cup \{0\}$, where $\{\alpha_n\} \subset [0, a]$ for some $a \in [0, 1)$. They showed that $\{x_n\}$ converges strongly to $P_{F(T)}x_0$.

In 2015, Khan et al. [13] used the following definition defined by Berinde [14] to compare the convergence rate:

Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers with limits a and b, respectively. Assume that there exists $\lim_{n\to\infty}\frac{|a_n-a|}{|b_n-b|}=\ell$. If $\ell=0$, then we say that $\{a_n\}$ converges faster to a than $\{b_n\}$ to b.

- Let C be a nonempty subset of a real Banach space X. Let \triangle denote the diagonal of the cartesian product $C \times C$. Consider a directed graph G such that the set V(G) of its vertices coincides with C, and the set E(G) of its edges with $\triangle \subseteq E(G)$. We assume G has no parallel edge. So we can identify the graph G with the pair (V(G), E(G)). A mapping $T: C \to C$ is said to be
 - 1. *G-contraction* if *T* satisfies the conditions:
 - (i) T preserves edges of G, i.e.,

$$(x, y) \in E(G) \Rightarrow (Tx, Ty) \in E(G), \ \forall (x, y) \in E(G);$$

(ii) T decreases weights of edges of G in the following way: there exists $\alpha \in (0, 1)$ such that

$$(x, y) \in E(G) \Rightarrow ||Tx - Ty|| \le \alpha ||x - y||, \ \forall (x, y) \in E(G);$$

- 2. *G-nonexpansive* if *T* satisfies the conditions:
- (i) T preserves edges of G, i.e.,

$$(x, y) \in E(G) \Rightarrow (Tx, Ty) \in E(G), \forall (x, y) \in E(G);$$

(ii) T non-increases weights of edges of G in the following way:

$$(x, y) \in E(G) \Rightarrow ||Tx - Ty|| \le ||x - y||, \ \forall (x, y) \in E(G).$$

In 2008, Jachymski [15] proved some generalizations of the Banach's contraction principle in complete metric spaces endowed with a graph. To be more precise, Jachymski proved the following result.

Theorem 1.1 ([15]). Let (X, d) be a complete metric space, and a triple (X, d, G) has the following property: for any sequence $\{x_n\}$ if $x_n \to x$ and $(x_n, x_{n+1}) \in E(G)$ for $n \in \mathbb{N}$ and there is the subsequence $\{x_{n_k}\}$ of $\{x_n\}$ with $(x_{n_k}, x) \in E(G)$ for $n \in \mathbb{N}$.

Let $T: X \to X$ be a G-contraction, and $X_T = \{x \in X : (x, Tx) \in E(G)\}$. Then $F(T) \neq \emptyset$ if and only if $X_T \neq \emptyset$.

When $\{x_n\}$ is a sequence in X, we denote the strong convergence of $\{x_n\}$ to $x \in X$ by $x_n \to x$ and the weak convergence by $x_n \to x$.

In 2015, Tiammee et al. [16] and Alfuraidan [17] employed the above theorem to establish the existence and the convergence results for G-nonexpansive mappings with graphs.

Motivated by Nakajo and Takahashi [12] and Tiammee et al. [16], we introduce the modified CQ method for proving a strong convergence theorem for G-nonexpansive mappings in a Hilbert space endowed with a directed graph. Moreover, we provide some numerical examples to support our main theorem.

2. Preliminaries and lemmas

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest point projection of H onto C is denoted by P_C , that is, $||x - P_C x|| \le ||x - y||$ for all $x \in H$ and $y \in C$. Such P_C is called the *metric projection* of H onto C. We know that the metric projection P_C is firmly nonexpansive, i.e.,

$$||P_C x - P_C y||^2 \le \langle P_C x - P_C y, x - y \rangle$$

for all $x, y \in H$. Furthermore, $\langle x - P_C x, y - P_C x \rangle \le 0$ holds for all $x \in H$ and $y \in C$; see [18].

Download English Version:

https://daneshyari.com/en/article/8902770

Download Persian Version:

https://daneshyari.com/article/8902770

<u>Daneshyari.com</u>