Some notes on the isolate domination in graphs

Nader Jafari Rad
Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

Received 13 July 2015; received in revised form 21 January 2017; accepted 23 January 2017

Available online xxxx

Abstract

A subset S of vertices of a graph G is a dominating set of G if every vertex in $V(G)-S$ has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set S is an isolate dominating set if the induced subgraph $G[S]$ has at least one isolated vertex. The isolate domination number $\gamma_{0}(G)$ is the minimum cardinality of an isolate dominating set of G. In this paper we study the complexity of the isolate domination in graphs, and obtain several bounds and characterizations on the isolate domination number, thus answering some open problems. © 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Domination; Isolate domination; Total domination; Complexity

1. Introduction

For notation and graph theory terminology, we in general follow [1,2]. Specifically, let G be a graph with vertex set $V(G)=V$ of order $|V|=n$ and size $|E(G)|=m$, and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V \mid u v \in E(G)\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N(v)$. The degree of v is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. If the graph G is clear from the context, we simply write $N(v)$ and $\operatorname{deg}(v)$ rather than $N_{G}(v)$ and $\operatorname{deg}_{G}(v)$, respectively. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S]=N(S) \cup S$. A vertex of degree one is called a leaf and its unique neighbor a support vertex. A pendant edge is an edge which one of its end-points is a leaf. A star of order $n \geq 3$ is a tree that has precisely one vertex that is not a leaf. A claw-free graph is a graph with no induced subgraph isomorphic to a star of order 4. A double-star is a tree that has precisely two vertices that are not leaves. We refer $S(a, b)$ as a double-star which its central vertices have degree a and b, respectively. For a subset S of vertices of G we denote by $G[S]$ the subgraph of G induced by S. For two subsets of vertices X and Y of $V(G)$, we denote by $G[X, Y]$ the subgraph of G induced by $X \cup Y$. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the maximum distance between pairs of vertices of G. The girth of G, denoted by $g(G)$, is the length of a shortest cycle contained in G.

[^0]
ARTICLE IN PRESS

A subset S of vertices of a graph G is a dominating set of G if every vertex in $V(G)-S$ has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. We refer a dominating set of cardinality $\gamma(G)$ as a $\gamma(G)$-set. A dominating set S in a graph with no isolated vertex is called a total dominating set of G if $G[S]$ has no isolated vertex. The total domination number $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set of G. We refer a total dominating set of cardinality $\gamma_{t}(G)$ as a $\gamma_{t}(G)$-set. A total dominating set S in G is called an efficient total dominating set if the open neighborhoods of the vertices of S form a partition for $V(G)$. For a subset S of vertices of G, and a vertex $x \in S$, we say that a vertex $y \notin S$ is an external private neighbor of x with respect to S if $N(y) \cap S=\{x\}$. We denote by epn (x, S) the set of all external private neighbors of x respect to S.

Hamid and Balamurugan [3] initiated the study of isolate domination in graphs. A dominating set S is an isolate dominating set if the induced subgraph $G[S]$ has at least one isolated vertex. The isolate domination number $\gamma_{0}(G)$ is the minimum cardinality of an isolate dominating set of G. The concept of isolate domination was further studied, for example in [4-9]. Hamid et al. [3] showed that for a cubic graph $G, \gamma(G) \leq \gamma_{0}(G) \leq \gamma(G)+1$. They presented several bounds, and properties for the isolate domination number, and proposed the following problem(s).

Problems: (1) Characterize cubic graphs G with $\gamma_{0}(G)=\gamma(G)+1$.
(2) Characterize graphs G with $\gamma_{0}(G)=\gamma(G)$, or $\gamma_{0}(G)=\frac{n}{2}$.
(3) Find bounds for $\gamma_{0}(G)$.

In this paper we first study the complexity of the isolate domination number in graph by showing that the decision problem for this variant is NP-complete, even when restricted to bipartite graphs. We then answer all of the above problems. We present several bounds, and characterizations for the isolate domination number in a graph.

In the following we state some known results that we need for the next. The corona graph of a graph G, denoted by $G o K_{1}$, is the graph obtained from G by adding a pendant edge to every vertex of G.

Theorem 1 ([1]). For a graph G of order n with no isolated vertex, $\gamma(G) \leq \frac{n}{2}$, with equality if and only if each component of G is a C_{4} or the corona $H_{o} K_{1}$ for any connected graph H.

Lemma 2 ([3]). For paths and cycles of order n, $\gamma_{0}\left(P_{n}\right)=\gamma_{0}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Theorem 3 ([2]). If G is a graph of order n and with no isolated vertex then $\gamma_{t}(G) \geq \frac{n}{\Delta(G)}$.

2. Complexity

In this section we show that the decision problem for the isolate domination is NP-complete, even when restricted to bipartite graphs. We use a transformation from the 3-SAT problem. A truth assignment for a set U of Boolean variables is a mapping $t: U \rightarrow\{T, F\}$. A variable u is said to be true (or false) under t if $t(u)=T$ (or $t(u)=F$). If u is a variable in U, then u and \bar{u} are literals over U. The literal u is true under t if and only if the variable u is true under t, and the literal \bar{u} is true if and only if the variable u is false. A clause over U is a set of literals over U, and it is satisfied by a truth assignment if and only if at least one of its members is true under that assignment. A collection \mathcal{C} of clauses over U is satisfiable if and only if there exists some truth assignment for U that simultaneously satisfies all the clauses in \mathcal{C}. Such a truth assignment is called a satisfying truth assignment for \mathcal{C}. The 3-SAT problem is specified as follows.

3-SAT problem:

Instance: A collection $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ of clauses over a finite set U of variables such that $\left|C_{j}\right|=3$ for $j=1,2, \ldots, m$.
Question: Is there a truth assignment for U that satisfies all the clauses in C ?
Note that the 3-SAT problem was proven to be NP-complete in [10]. Consider the following decision problem.

Isolate dominating set (IDS):

Instance: A graph $G=(V, E)$ and a positive integer k.
Question: Does G have an isolate dominating set of size at most k ?

https://daneshyari.com/en/article/8902772

Download Persian Version:
https://daneshyari.com/article/8902772

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.
 E-mail address: n.jafarirad@gmail.com.

