On the edge irregularity strength of corona product of cycle with isolated vertices

I. Tarawneh ${ }^{\text {a }}$, R. Hasni ${ }^{\text {a }}{ }^{*}$, A. Ahmad ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
${ }^{\mathrm{b}}$ College of Computer Science \& Information Systems, Jazan University, Jazan, Saudi Arabia

Received 7 February 2016; received in revised form 8 June 2016; accepted 16 June 2016

Abstract

In this paper, we investigate the new graph characteristic, the edge irregularity strength, denoted as es, as a modification of the well known irregularity strength, total edge irregularity strength and total vertex irregularity strength. As a result, we obtain the exact value of an edge irregularity strength of corona product of cycle with isolated vertices. (C) 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Irregularity assignment; Irregularity strength; Edge irregularity strength; Unicyclic graphs

1. Introduction

Let G be a connected, simple and undirected graph with vertex set $V(G)$ and edge set $E(G)$. By a labeling we mean any mapping that maps a set of graph elements to a set of numbers (usually positive integers), called labels. If the domain is the vertex-set or the edge-set, the labelings are called respectively vertex labelings or edge labelings. If the domain is $V(G) \cup E(G)$, then we call the labeling total labeling. Thus, for an edge k-labeling $\delta: E(G) \rightarrow\{1,2, \ldots, k\}$ the associated weight of a vertex $x \in V(G)$ is

$$
w_{\delta}(x)=\sum \delta(x y)
$$

where the sum is over all vertices y adjacent to x.
Chartrand et al. [1] introduced edge k-labeling δ of a graph G such that $w_{\delta}(x)=\sum \delta(x y)$ for all vertices $x, y \in V(G)$ with $x \neq y$. Such labelings were called irregular assignments and the irregularity strength $s(G)$ of a graph G is known as the minimum k for which G has an irregular assignment using labels at most k. This parameter has attracted much attention [2-8].

[^0]Motivated by these papers, Baca et al. [9] defined a vertex irregular total k-labeling of a graph G to be a total labeling of $G, \psi: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$, such that the total vertex-weights

$$
w t(x)=\psi(x)+\sum_{x y \in E(G)} \psi(x y)
$$

are different for all vertices, that is, $w t(x) \neq w t(y)$ for all different vertices $x, y \in V(G)$. The total vertex irregularity strength of $G, \operatorname{tvs}(G)$, is the minimum k for which G has a vertex irregular total k-labeling. They also defined the total labeling $\psi: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$ to be an edge irregular total k-labeling of the graph G if for every two different edges $x y$ and $x^{\prime} y^{\prime}$ of G one has $w t(x y)=\psi(x)+\psi(x y)+\psi(y) \neq w t\left(x^{\prime} y^{\prime}\right)=\psi\left(x^{\prime}\right)+\psi\left(x^{\prime} y^{\prime}\right)+\psi\left(y^{\prime}\right)$. The total edge irregularity strength, tes (G), is defined as the minimum k for which G has an edge irregular total k-labeling. Some results on the total vertex irregularity strength and the total edge irregularity strength can be found in [10-16,8,17-19].

The most complete recent survey of graph labelings is [20].
A vertex k-labeling $\phi: V(G) \rightarrow\{1,2, \ldots, k\}$ is called an edge irregular k-labeling of the graph G if for every two different edges e and f, there is $w_{\phi}(e) \neq w_{\phi}(f)$, where the weight of an edge $e=x y \in E(G)$ is $w_{\phi}(x y)=\phi(x)+\phi(y)$. The minimum k for which the graph G has an edge irregular k-labeling is called the edge irregularity strength of G, denoted by $\operatorname{es}(G)$ (see [21]).

In [21], the authors estimated the bounds of the edge irregularity strength es and then determined its exact values for several families of graphs namely, paths, stars, double stars and Cartesian product of two paths. Mushayt [22] determined the edge irregularity strength of cartesian product of star, cycle with path P_{2} and strong product of path P_{n} with P_{2}. Tarawneh et al. [23] investigated the edge irregularity strength of corona product of graph with paths. Recently, Ahmad [24] determined the exact value of the edge irregularity strength of corona graph $C_{n} \odot K_{1}$ (or sun graph S_{n}).

The following theorem established lower bound for the edge irregularity strength of a graph G.
Theorem 1 ([21]). Let $G=(V, E)$ be a simple graph with maximum degree $\Delta=\Delta(G)$. Then

$$
e s(G) \geq \max \left\{\left\lceil\frac{|E(G)|+1}{2}\right\rceil, \Delta(G)\right\} .
$$

In this paper, we determine the exact value of edge irregularity strength of corona graphs $C_{n} \odot m K_{1}, m \geq 2$.

2. Two lemmas

The corona product of two graphs G and H, denoted by, $G \odot H$, is a graph obtained by taking one copy of G (which has n vertices) and n copies $H_{1}, H_{2}, \ldots, H_{n}$ of H, and then joining the i th vertex of G to every vertex in H_{i}.

The corona product $C_{n} \odot m K_{1}$ is a graph with the vertex set $V\left(C_{n} \odot m K_{1}\right)=\left\{x_{i}, y_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and edge set $E\left(C_{n} \odot m K_{1}\right)=\left\{x_{i} x_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{x_{i} y_{i}^{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\} \cup\left\{x_{n} x_{1}\right\}$ is the edge set of $C_{n} \odot m K_{1}$. The corona product $C_{n} \odot K_{1}$ is also know as sun graph S_{n}. Ahmad [24] determined the exact value of the edge irregularity strength of $C_{n} \odot K_{1}=S_{n}$.

The following two lemmas determine the exact value of the edge irregularity strength for two particular cases.
Lemma 1. Let $C_{n} \odot 2 K_{1}, n \geq 3$, be a corona graph. Then, es $\left(C_{n} \odot 2 K_{1}\right)=\left\lceil\frac{3 n+1}{2}\right\rceil$.
Proof. The graph $C_{n} \odot 2 K_{1}$ has $3 n$ vertices and $3 n$ edges. The maximum degree of $\Delta\left(C_{n} \odot 2 K_{1}\right)$ is 4 . Therefore, by Theorem 1, we have that $\operatorname{es}\left(C_{n} \odot 2 k_{1}\right) \geq \max \left\{\left\lceil\frac{3 n+1}{2}\right\rceil, 4\right\}=\left\lceil\frac{3 n+1}{2}\right\rceil$. To prove the equality, it suffices to prove the existence of an optimal edge irregular $\left\lceil\frac{3 n+1}{2}\right\rceil$-labeling. Assume $k=\left\lceil\frac{3 n+1}{2}\right\rceil$. Let $\phi_{1}: V\left(C_{n} \odot 2 K_{1}\right) \rightarrow$ $\left\{1,2, \ldots,\left\lceil\frac{3 n+1}{2}\right\rceil\right\}$ be the vertex labeling such that:

For $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor+1, \phi_{1}\left(x_{i}\right)=2\left\lceil\frac{i-1}{2}\right\rceil+\left\lceil\frac{i}{2}\right\rceil$ and for $\left\lfloor\frac{n}{2}\right\rfloor+2 \leq i \leq n, \phi_{1}\left(x_{i}\right)=k-2\left\lceil\frac{n-i}{2}\right\rceil-\left\lfloor\frac{n-i}{2}\right\rfloor . \phi_{1}\left(y_{i}^{j}\right)=$ $2\left\lfloor\frac{i-1}{2}\right\rfloor+\left\lfloor\frac{i}{2}\right\rfloor+j$ for $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, 1 \leq j \leq 2$. For $i=\left\lfloor\frac{n}{2}\right\rfloor+1, n \equiv 1(\bmod 4), 1 \leq j \leq 2, \phi_{1}\left(y_{i}^{j}\right)=\frac{3 n-11}{4}+3 j$.

https://daneshyari.com/en/article/8902797

Download Persian Version:

https://daneshyari.com/article/8902797

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author. Fax: +60 96694660.

 E-mail addresses: ibrahimradi50@yahoo.com (I. Tarawneh), hroslan@umt.edu.my (R. Hasni), ahmadsms@gmail.com (A. Ahmad).

