ARTICLE IN PRESS

Available online at www.sciencedirect.com

AKCE International Journal of Graphs and Combinatorics

www.elsevier.com/locate/akcej

On the edge irregularity strength of corona product of cycle with isolated vertices

I. Tarawneh^a, R. Hasni^{a,*}, A. Ahmad^b

^a School of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia ^b College of Computer Science & Information Systems, Jazan University, Jazan, Saudi Arabia

Received 7 February 2016; received in revised form 8 June 2016; accepted 16 June 2016

Abstract

In this paper, we investigate the new graph characteristic, the edge irregularity strength, denoted as *es*, as a modification of the well known irregularity strength, total edge irregularity strength and total vertex irregularity strength. As a result, we obtain the exact value of an edge irregularity strength of corona product of cycle with isolated vertices.

© 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Irregularity assignment; Irregularity strength; Edge irregularity strength; Unicyclic graphs

1. Introduction

Let G be a connected, simple and undirected graph with vertex set V(G) and edge set E(G). By a *labeling* we mean any mapping that maps a set of graph elements to a set of numbers (usually positive integers), called *labels*. If the domain is the vertex-set or the edge-set, the labelings are called respectively *vertex labelings* or *edge labelings*. If the domain is $V(G) \cup E(G)$, then we call the labeling *total labeling*. Thus, for an edge k-labeling $\delta : E(G) \rightarrow \{1, 2, ..., k\}$ the associated weight of a vertex $x \in V(G)$ is

$$w_{\delta}(x) = \sum \delta(xy),$$

where the sum is over all vertices y adjacent to x.

Chartrand et al. [1] introduced edge k-labeling δ of a graph G such that $w_{\delta}(x) = \sum \delta(xy)$ for all vertices $x, y \in V(G)$ with $x \neq y$. Such labelings were called *irregular assignments* and the *irregularity strength* s(G) of a graph G is known as the minimum k for which G has an irregular assignment using labels at most k. This parameter has attracted much attention [2–8].

E-mail addresses: ibrahimradi50@yahoo.com (I. Tarawneh), hroslan@umt.edu.my (R. Hasni), ahmadsms@gmail.com (A. Ahmad).

http://dx.doi.org/10.1016/j.akcej.2016.06.010

Peer review under responsibility of Kalasalingam University.

^{*} Corresponding author. Fax: +60 96694660.

^{0972-8600/© 2016} Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: I. Tarawneh, et al., On the edge irregularity strength of corona product of cycle with isolated vertices, AKCE International Journal of Graphs and Combinatorics (2016), http://dx.doi.org/10.1016/j.akcej.2016.06.010

ARTICLE IN PRESS

I. Tarawneh et al. / AKCE International Journal of Graphs and Combinatorics I (IIII) III-III

Motivated by these papers, Baca et al. [9] defined a *vertex irregular total k-labeling* of a graph G to be a total labeling of $G, \psi : V(G) \cup E(G) \rightarrow \{1, 2, ..., k\}$, such that the *total vertex-weights*

$$wt(x) = \psi(x) + \sum_{xy \in E(G)} \psi(xy)$$

are different for all vertices, that is, $wt(x) \neq wt(y)$ for all different vertices $x, y \in V(G)$. The *total vertex irregularity* strength of G, tvs(G), is the minimum k for which G has a vertex irregular total k-labeling. They also defined the total labeling $\psi : V(G) \cup E(G) \rightarrow \{1, 2, ..., k\}$ to be an edge irregular total k-labeling of the graph G if for every two different edges xy and x'y' of G one has $wt(xy) = \psi(x) + \psi(xy) + \psi(y) \neq wt(x'y') = \psi(x') + \psi(x'y') + \psi(y')$. The *total edge irregularity strength*, tes(G), is defined as the minimum k for which G has an edge irregular total k-labeling. Some results on the total vertex irregularity strength and the total edge irregularity strength can be found in [10-16,8,17-19].

The most complete recent survey of graph labelings is [20].

A vertex k-labeling ϕ : $V(G) \rightarrow \{1, 2, ..., k\}$ is called an *edge irregular k-labeling* of the graph G if for every two different edges e and f, there is $w_{\phi}(e) \neq w_{\phi}(f)$, where the weight of an edge $e = xy \in E(G)$ is $w_{\phi}(xy) = \phi(x) + \phi(y)$. The minimum k for which the graph G has an edge irregular k-labeling is called the *edge irregularity strength* of G, denoted by es(G) (see [21]).

In [21], the authors estimated the bounds of the edge irregularity strength *es* and then determined its exact values for several families of graphs namely, paths, stars, double stars and Cartesian product of two paths. Mushayt [22] determined the edge irregularity strength of cartesian product of star, cycle with path P_2 and strong product of path P_n with P_2 . Tarawneh et al. [23] investigated the edge irregularity strength of corona product of graph with paths. Recently, Ahmad [24] determined the exact value of the edge irregularity strength of corona graph $C_n \odot K_1$ (or sun graph S_n).

The following theorem established lower bound for the edge irregularity strength of a graph G.

Theorem 1 ([21]). Let G = (V, E) be a simple graph with maximum degree $\Delta = \Delta(G)$. Then

$$es(G) \ge \max\left\{\left\lceil \frac{|E(G)|+1}{2} \right\rceil, \Delta(G)\right\}.$$

In this paper, we determine the exact value of edge irregularity strength of corona graphs $C_n \odot mK_1, m \ge 2$.

2. Two lemmas

The corona product of two graphs G and H, denoted by, $G \odot H$, is a graph obtained by taking one copy of G (which has n vertices) and n copies H_1, H_2, \ldots, H_n of H, and then joining the *i*th vertex of G to every vertex in H_i .

The corona product $C_n \odot mK_1$ is a graph with the vertex set $V(C_n \odot mK_1) = \{x_i, y_i^j : 1 \le i \le n, 1 \le j \le m\}$ and edge set $E(C_n \odot mK_1) = \{x_i x_{i+1} : 1 \le i \le n-1\} \cup \{x_i y_i^j : 1 \le i \le n, 1 \le j \le m\} \cup \{x_n x_1\}$ is the edge set of $C_n \odot mK_1$. The corona product $C_n \odot K_1$ is also know as sun graph S_n . Ahmad [24] determined the exact value of the edge irregularity strength of $C_n \odot K_1 = S_n$.

The following two lemmas determine the exact value of the edge irregularity strength for two particular cases.

Lemma 1. Let $C_n \odot 2K_1$, $n \ge 3$, be a corona graph. Then, $es(C_n \odot 2K_1) = \lceil \frac{3n+1}{2} \rceil$.

Proof. The graph $C_n \odot 2K_1$ has 3n vertices and 3n edges. The maximum degree of $\Delta(C_n \odot 2K_1)$ is 4. Therefore, by Theorem 1, we have that $es(C_n \odot 2k_1) \ge \max\left\{\left\lceil \frac{3n+1}{2} \right\rceil, 4\right\} = \lceil \frac{3n+1}{2} \rceil$. To prove the equality, it suffices to prove the existence of an optimal edge irregular $\lceil \frac{3n+1}{2} \rceil$ -labeling. Assume $k = \lceil \frac{3n+1}{2} \rceil$. Let $\phi_1 : V(C_n \odot 2K_1) \rightarrow \{1, 2, \ldots, \lceil \frac{3n+1}{2} \rceil\}$ be the vertex labeling such that:

For $1 \le i \le \lfloor \frac{n}{2} \rfloor + 1$, $\phi_1(x_i) = 2\lceil \frac{i-1}{2} \rceil + \lceil \frac{i}{2} \rceil$ and for $\lfloor \frac{n}{2} \rfloor + 2 \le i \le n$, $\phi_1(x_i) = k - 2\lceil \frac{n-i}{2} \rceil - \lfloor \frac{n-i}{2} \rfloor$. $\phi_1(y_i^j) = 2\lfloor \frac{i-1}{2} \rfloor + \lfloor \frac{i}{2} \rfloor + j$ for $1 \le i \le \lfloor \frac{n}{2} \rfloor$, $1 \le j \le 2$. For $i = \lfloor \frac{n}{2} \rfloor + 1$, $n \equiv 1 \pmod{4}$, $1 \le j \le 2$, $\phi_1(y_i^j) = \frac{3n-11}{4} + 3j$.

Please cite this article in press as: I. Tarawneh, et al., On the edge irregularity strength of corona product of cycle with isolated vertices, AKCE International Journal of Graphs and Combinatorics (2016), http://dx.doi.org/10.1016/j.akcej.2016.06.010

Download English Version:

https://daneshyari.com/en/article/8902797

Download Persian Version:

https://daneshyari.com/article/8902797

Daneshyari.com