On clique convergence of graphs

S.M. Hegde*, Suresh Dara
Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, India

Received 11 February 2016; received in revised form 29 June 2016; accepted 7 July 2016

Abstract

Let G be a graph and \mathcal{K}_{G} be the set of all cliques of G, then the clique graph of G denoted by $K(G)$ is the graph with vertex set \mathcal{K}_{G} and two elements $Q_{i}, Q_{j} \in \mathcal{K}_{G}$ form an edge if and only if $Q_{i} \cap Q_{j} \neq \emptyset$. Iterated clique graphs are defined by $K^{0}(G)=G$, and $K^{n}(G)=K\left(K^{n-1}(G)\right)$ for $n>0$. In this paper we prove a necessary and sufficient condition for a clique graph $K(G)$ to be complete when $G=G_{1}+G_{2}$, give a partial characterization for clique divergence of the join of graphs and prove that if G_{1}, G_{2} are Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$, then $K^{2}(G)=G$. © 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

Keywords: Maximal clique; Clique graph; Graph operator

1. Introduction

Given a simple graph $G=(V, E)$, not necessarily finite, a clique in G is a maximal complete subgraph in G. Let G be a graph and \mathcal{K}_{G} be the set of all cliques of G, then the clique graph operator is denoted by K and the clique graph of G is denoted by $K(G)$, where $K(G)$ is the graph with vertex set \mathcal{K}_{G} and two elements $Q_{i}, Q_{j} \in \mathcal{K}_{G}$ form an edge if and only if $Q_{i} \cap Q_{j} \neq \emptyset$. Clique graph was introduced by Hamelink in 1968 [1]. Iterated clique graphs are defined by $K^{0}(G)=G$, and $K^{n}(G)=K\left(K^{n-1}(G)\right)$ for $n>0($ see [2-4]).

Definition 1.1. A graph G is said to be K-periodic if there exists a positive integer n such that $G \cong K^{n}(G)$ and the least such integer is called the K-periodicity of G, denoted K-per (G).

Definition 1.2. A graph G is said to be K-Convergent if $\left\{K^{n}(G): n \in \mathbb{N}\right\}$ is finite, otherwise it is K-Divergent (see [5]).

Definition 1.3. A graph H is said to be K-root of a graph G if $K(H)=G$.
If G is a clique graph then one can observe that, the set of all K-roots of G is either empty or infinite.

[^0]
ARTICLE IN PRESS

Definition 1.4 ([3]). A graph G is a Clique-Helly Graph if the set of cliques has the Helly-Property. That is, for every family of pairwise intersecting cliques of the graph, the total intersection of all these cliques should be non-empty also.

Definition 1.5. Let $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ be the two graphs. Then their join $G_{1}+G_{2}$ is obtained by adding all possible edges between the vertices of G_{1} and G_{2}.

Definition 1.6. The Cartesian product of two graphs G and H, denoted $G \square H$, is a graph with vertex set $V(G \square H)=$ $V(G) \times V(H)$, i.e., the set $\{(g, h) \mid g \in G, h \in H\}$. The edge set of $G \square H$ consists of all pairs [$\left.\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right]$ of vertices with $\left[g_{1}, g_{2}\right] \in E(G)$ and $h_{1}=h_{2}$, or $g_{1}=g_{2}$ and $\left[h_{1}, h_{2}\right] \in E(H)$ (see [6] page no 3).

2. Results

One can observe that the clique graph of a complete graph and star graph are always complete. Let G be a graph with n vertices and having a vertex of degree $n-1$, then the clique graph of G is also complete.

Theorem 2.1. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$, then X is a clique in G_{1} and Y is a clique in G_{2} if and only if $X+Y$ is a clique in $G_{1}+G_{2}$.

Proof. Let $G=G_{1}+G_{2}$ and X be a clique in G_{1} and Y be a clique in G_{2}. Suppose that $X+Y$ is not a maximal complete subgraph in $G_{1}+G_{2}$, then there is a maximal complete subgraph (clique) Q in $G_{1}+G_{2}$ such that $X+Y$ is a proper subgraph of Q. Since $X+Y$ is a proper subgraph of Q, there is a vertex v in Q which is not in $X+Y$ and v is adjacent to every vertex of $X+Y$, then by the definition of $G_{1}+G_{2}, v$ should be in either G_{1} or G_{2}. Suppose v is in G_{1}, then the induced subgraph of $V(X)+\{v\}$ is complete in G_{1}, which is a contradiction as X is maximal. Therefore $X+Y$ is the maximal complete subgraph (clique) in $G_{1}+G_{2}$.

Conversely, let Q is a clique in $G_{1}+G_{2}$. Suppose that $Q \neq X+Y$ where X is a clique in G_{1} and Y is a clique in G_{2}. If $Q \cap G_{1}=\emptyset$, then Q is a subgraph of G_{2}. This implies that Q is a clique in G_{2} as Q is a clique in G. Let v be a vertex of G_{1}. Then by the definition of $G_{1}+G_{2}$, one can observe that the induced subgraph of $V(Q) \cup\{v\}$ is complete in G, which is a contradiction as Q is a maximal complete subgraph. Therefore $Q \cap G_{1} \neq \emptyset$. Similarly we can prove that $Q \cap G_{2} \neq \emptyset$. Let X be the induced subgraph of G with vertex set $V(Q) \cap V\left(G_{1}\right)$ and Y be the induced subgraph of G with vertex set $V(Q) \cap V\left(G_{2}\right)$, then $Q=X+Y$. Since Q is a maximal complete subgraph of G, X and Y should be maximal complete subgraphs in G_{1} and G_{2} respectively. Otherwise, if X is not a maximal complete subgraph in G_{1} then there is a maximal complete subgraph X^{\prime} in G_{1} such that X is subgraph of X^{\prime}, and this implies that $X+Y$ is a subgraph of $X^{\prime}+Y$ and $X^{\prime}+Y$ is complete, which is a contradiction. Therefore X and Y are maximal complete subgraphs (cliques) in G_{1} and G_{2} respectively.

Corollary 2.2. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If n, m are the number of cliques in G_{1}, G_{2} respectively, then G has nm cliques.

Proof. Let $G=G_{1}+G_{2}, \mathcal{K}_{G_{1}}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the set of all cliques of G_{1} and $\mathcal{K}_{G_{2}}=\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$ be the set of all cliques of G_{2}. Then by Theorem 2.1 it follows that $\mathcal{K}_{G}=\left\{X_{i}+Y_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ is the set of all cliques of G. Since G_{1} has n, G_{2} has m number of cliques, $G_{1}+G_{2}$ has nm number of cliques.

In the following result we give a necessary and sufficient condition for a clique graph $K(G)$ to be complete when $G=G_{1}+G_{2}$.

Theorem 2.3. Let G_{1}, G_{2} be two graphs. If $G=G_{1}+G_{2}$, then $K(G)$ is complete if and only if either $K\left(G_{1}\right)$ is complete or $K\left(G_{2}\right)$ is complete.

Proof. Let $G=G_{1}+G_{2}$ and $K(G)$ be complete. Suppose that neither $K\left(G_{1}\right)$ nor $K\left(G_{2}\right)$ is complete, then there exist two cliques X, X^{\prime} in G_{1} and two cliques Y, Y^{\prime} in G_{2} such that $X \cap X^{\prime}=\emptyset$ and $Y \cap Y^{\prime}=\emptyset$. By Theorem 2.1 it follows that $X+Y, X^{\prime}+Y^{\prime}$ are cliques in G. Since $X \cap X^{\prime}$ and $Y \cap Y^{\prime}$ are empty, it follows that $\{X+Y\} \cap\left\{X^{\prime}+Y^{\prime}\right\}=\emptyset$, which is a contradiction as $K(G)$ is complete.

Conversely, suppose that $K\left(G_{1}\right)$ is complete and $\mathcal{K}_{G_{1}}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}, \mathcal{K}_{G_{2}}=\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$. By Corollary 2.2, it follows that G has exactly nm number of cliques. Let $\mathcal{K}_{G}=\left\{Q_{i j}: Q_{i j}=X_{i}+Y_{j}\right.$ for $i=$

https://daneshyari.com/en/article/8902803

Download Persian Version:

https://daneshyari.com/article/8902803

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: smhegde@nitk.ac.in (S.M. Hegde), suresh.dara@gmail.com (S. Dara).

