

Available online at www.sciencedirect.com

AKCE International Journal of Graphs and Combinatorics

AKCE International Journal of Graphs and Combinatorics 13 (2016) 283-289

www.elsevier.com/locate/akcej

Characterizing minimal point set dominating sets

Purnima Gupta^{a,*}, Rajesh Singh^b, S. Arumugam^c

^a Department of Mathematics, Sri Venkateswara College, University of Delhi, Delhi-110021, India

^b Department of Mathematics, University of Delhi, Delhi-110007, India

^c National Centre for Advanced Research in Discrete Mathematics, Kalasalingam University, Krishnankoil-626126, Tamil Nadu, India

Received 13 April 2015; accepted 29 July 2016 Available online 7 December 2016

Dedicated to sweet memories of Dr. B.D Acharya

Abstract

A set *D* of vertices in a graph G = (V, E) is said to be a point-set dominating set (or, in short, psd-set) of *G* if for every subset *S* of V - D there exists a vertex $v \in D$ such that the subgraph $(S \cup \{v\})$ is connected; the set of all psd-sets of *G* will be denoted $\mathfrak{D}_{ps}(G)$. The point-set domination number of a graph denoted by $\gamma_p(G)$ is the minimum cardinality of a psd-set of *G*. We obtain a lower bound for $\gamma_p(G)$ and characterize graphs which attain this bound. A psd-set *D* of a graph *G* is *minimal* if no proper subset of *D* is a psd-set of *G*. In this paper, we give a general characterization of psd-sets which are minimal. Also, in the case of separable graphs, we obtain more transparent and structure specific characterizations of minimal psd-sets.

© 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Domination; Point-set domination; Minimal point-set dominating set

1. Introduction

By a graph G = (V, E) we mean a finite undirected graph with neither loops nor multiple edges. For graph theoretic terminology we refer to West [1].

A set *D* of vertices of a graph *G* is said to be a *dominating set* [2–4] (or, in short, dom-set) if every vertex $v \in V - D$ is adjacent to some vertex $u \in D$. The set of all dominating sets in G will be denoted by $\mathfrak{D}(G)$. The domination number of a graph *G* denoted by $\gamma(G)$ is the minimum cardinality of a dominating set of *G*.

A set *D* of vertices in a graph *G* is a *point-set dominating set* (or, in short, psd-set) of *G* if for every subset $S \subseteq V - D$ there exists $v \in D$ such that the subgraph $\langle S \cup \{v\} \rangle$ is connected. The set of all psd-sets in *G* will be denoted by $\mathfrak{D}_{ps}(G)$. The point-set domination number of a graph *G*, denoted by $\gamma_p(G)$, is the minimum cardinality

http://dx.doi.org/10.1016/j.akcej.2016.07.003

Peer review under responsibility of Kalasalingam University.

^{*} Corresponding author.

E-mail addresses: purnimachandni1@gmail.com (P. Gupta), singh_rajesh999@outlook.com (R. Singh), s.arumugam.klu@gmail.com (S. Arumugam).

^{0972-8600/© 2016} Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

of a psd-set of G. The set of all psd-sets of G with cardinality $\gamma_p(G)$ is denoted by $\mathfrak{D}_{ps}^o(G)$. Further for any graph G, a psd-set of G with exactly $\gamma_p(G)$ elements will be called a γ_p -set (or, a minimum psd-set) of G or, more simply, a $\gamma_p(G)$ -set.

Clearly every psd-set of a graph G must be a dominating set of G but converse need not be true. Hence we have

$$\gamma(G) \le \gamma_p(G) \quad \text{and} \quad \mathfrak{D}_{ps}(G) \subseteq \mathfrak{D}(G).$$
 (1)

Lemma 1.1 ([5]). Let G be any graph and D be any psd-set of G. Then, $\langle V - D \rangle$ is a proper subgraph of a component H of G. Conversely, if H is a component of G then a psd-set of H, together with the vertex sets of all other components of G, forms a psd-set of G.

Theorem 1.2 ([5]). Let G be a graph of order n, and \mathfrak{C}_G denote the set of its components. Then

$$\gamma_p(G) = n - \max_{H \in \mathfrak{C}_G} (|V(H)| - \gamma_p(H)).$$

We observe from Theorem 1.2 that to find the point set domination number of a graph G, we need to find the point set domination number of each of its components. Hence, without loss of generality, we may assume that G is connected which we shall do hither forth.

The following two interesting observations made in [6] are easy consequences of the definition of psd-sets and are useful while working on psd-sets.

Proposition 1 ([6]). Let G be a graph and D be a psd-set. Then $d(u, v) \leq 2$ for all $u, v \in V - D$. Also, if G is a graph with maximum degree $\Delta(G)$ and order n, then

$$\gamma_p(G) \leq n - \Delta(G).$$

Walikar, Acharya and Sampathkumar [7] gave the following theorem that gives a lower bound for the domination number.

Theorem 1.3 ([7]). Let G be any graph of order n and maximum degree Δ , then

$$\frac{n}{1+\Delta} \le \gamma(G). \tag{2}$$

It follows from (1) and (2) that for any graph G of order n and maximum degree Δ ,

$$\frac{n}{1+\Delta} \le \gamma_p(G). \tag{3}$$

In the next theorem we characterize extremal graphs attaining the bound in (3).

Theorem 1.4. Let G be any graph of order n and maximum degree Δ . Then

$$\frac{n}{1+\Delta} = \gamma_p(G) \text{ if and only if } \Delta = n-1.$$
(4)

Proof. Let equality in (4) hold and D be a $\gamma_p(G)$ -set of G. Then $|V - D| = \Delta |D|$. As every psd-set is a dom-set, we have

$$|V - D| \le \sum_{u \in D} d(u) \le \sum_{u \in D} \Delta = \Delta |D| = |V - D|.$$

Hence $\sum_{u \in D} (\Delta - d(u)) = 0$ which implies $\Delta = d(u)$ for each $u \in D$.

Since $|V - D| = \Delta |D|$ and $\Delta = d(u)$ for all $u \in D$, D is independent and $N(v) \cap N(u) = \phi$ for all v, u $(v \neq u) \in D$. We claim that |D| = 1. If not, let u and v be two distinct vertices in D. Then D being a psd-set, $N(v) \cup \{u\} \subseteq N(x)$ for each $x \in N(u)$. Consequently, $d(x) \ge |N(v)| + 1 = \Delta + 1$, a contradiction. Thus |D| = 1 and $\Delta = n - 1$.

Conversely, if $\Delta = n - 1$, then equality in (4) is satisfied trivially. \Box

Download English Version:

https://daneshyari.com/en/article/8902812

Download Persian Version:

https://daneshyari.com/article/8902812

Daneshyari.com