Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A characterization for the neighbor-distinguishing total chromatic number of planar graphs with $\Delta = 13$

Jingjing Huo^a, Weifan Wang^{b,*}, Yiqiao Wang^c

^a Department of Mathematics, Hebei University of Engineering, Handan 056038, China

^b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

^c School of Management, Beijing University of Chinese Medicine, Beijing 100029, China

ARTICLE INFO

Article history: Received 31 October 2017 Received in revised form 8 July 2018 Accepted 10 July 2018

Keywords: Planar graph Neighbor-distinguishing total coloring Discharging Combinatorial Nullstellensatz

ABSTRACT

The neighbor-distinguishing total chromatic number $\chi_a''(G)$ of a graph *G* is the smallest integer *k* such that *G* can be totally colored using *k* colors with a condition that any two adjacent vertices have different sets of colors. In this paper, we give a sufficient and necessary condition for a planar graph *G* with maximum degree 13 to have $\chi_a''(G) = 14$ or $\chi_a''(G) = 15$. Precisely, we show that if *G* is a planar graph of maximum degree 13, then $14 \le \chi_a''(G) \le 15$; and $\chi_a''(G) = 15$ if and only if *G* contains two adjacent 13-vertices.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite and simple. Let *G* be a plane graph with vertex set V(G), edge set E(G), face set F(G), minimum degree $\delta(G)$ and maximum degree $\Delta(G)$ (for short, Δ). An *element* of *G* is a member of $V(G) \cup E(G) \cup F(G)$. Two elements are *adjacent* if they are either adjacent to or incident with each other in the classical sense. For positive integers p, q with $p \leq q$, let [p, q] denote the set of all integers between p and q.

A total k-coloring of a graph G is a mapping $\phi : V(G) \cup E(G) \rightarrow \{1, 2, ..., k\}$ such that no two adjacent elements receive same color. The total chromatic number $\chi''(G)$ of G is the smallest integer k such that G has a total k-coloring. For a total k-coloring ϕ of G, we use $C_{\phi}(v) = \{\phi(v)\} \cup \{\phi(xv)|xv \in E(G)\}$ to denote the set of colors assigned to a vertex v and those edges incident with v. The total k-coloring ϕ is called *neighbor-distinguishing* (or ϕ is an AVDT-k-coloring) if $C_{\phi}(u) \neq C_{\phi}(v)$ for each edge $uv \in E(G)$. The *neighbor-distinguishing total chromatic number* $\chi_a''(G)$ of G is the smallest integer k such that G has an AVDT-k-coloring.

It holds trivially that $\chi_a''(G) \ge \chi''(G) \ge \Delta + 1$ for any graph *G*. Moreover, if *G* contains two adjacent vertices of maximum degree, then it is evident that $\chi_a''(G) \ge \Delta + 2$. Zhang et al. [16] introduced the neighbor-distinguishing total coloring of graphs and proposed the following conjecture:

Conjecture 1. If G is a graph with $|V(G)| \ge 2$, then $\chi_a''(G) \le \Delta + 3$.

Conjecture 1 was confirmed for graphs with $\Delta = 3$ in [2,8,10,12], and graphs with $\Delta = 4$ in [9,11]. Applying a probabilistic analysis, Coker and Johannson [4] established an upper bound $\Delta + C$ for $\chi_a''(G)$, where C is a positive constant. Huang, Wang and Yan [7] proved that $\chi_a''(G) \leq 2\Delta$ for any graph G with $\Delta \geq 3$.

E-mail address: wwf@zjnu.cn (W. Wang).

https://doi.org/10.1016/j.disc.2018.07.011 0012-365X/© 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

Suppose that *G* is a planar graph. Huang and Wang [6] showed that if $\Delta \ge 11$, then *G* satisfies Conjecture 1. This result was improved to the case $\Delta = 10$ by Cheng et al. [3], and furthermore to the case $\Delta = 9$ by Wang et al. [14] and Hu et al. [5], independently. Therefore the following theorem holds:

Theorem 1. If G is a planar graph with $\Delta \ge 9$, then $\chi_a''(G) \le \Delta + 3$.

In 2014, Wang and Huang [13] showed: (i) if *G* is a planar graph with $\Delta \ge 13$, then $\chi_a''(G) \le \Delta + 2$; and (ii) if moreover $\Delta \ge 14$, then $\chi_a''(G) = \Delta + 2$ if and only if *G* contains two adjacent vertices of maximum degree. Recently, the conclusion (i) was extended to the case $11 \le \Delta \le 12$ by Yang et al. [15]. Thus, combining these facts, we obtain the following theorem:

Theorem 2. If G is a planar graph with $\Delta \ge 11$, then $\chi_a''(G) \le \Delta + 2$.

The purpose of this paper is to extend the above result (ii), namely we will show that every planar graph *G* with $\Delta = 13$ has $\chi_a''(G) = 15$ if and only if *G* contains two adjacent vertices of degree 13.

2. Preliminaries

Suppose that *H* is a subgraph of a plane graph *G*. For $x \in V(H) \cup F(H)$, let $d_H(x)$ denote the degree of *x* in *H*. A vertex of degree *k* (at least *k*, at most *k*) in *H* is called a *k*-vertex (k^+ -vertex, k^- -vertex). Similarly, we can define *k*-face, k^+ -face and k^- -face. For a vertex $v \in V(H)$, let $N_H(v)$ denote the set of neighbors of *v* in *H*. A *k*-neighbor of *v* is a *k*-vertex adjacent to *v*. Let $N_k^H(v)$ denote the set of *k*-neighbors of *v* in *H*, and set $d_k^H(v) = |N_k^H(v)|$. Similarly, we can define $d_{k-1}^H(v)$.

A 4-cycle is said to be *bad* if it has at least one 2-vertex, and *special* if it has two non-adjacent 2-vertices. A 3-face is *special* if it is incident to a 2-vertex. A 2-vertex is called *special* if it is adjacent to a special 4-cycle. A *k*-vertex *v*, with $k \ge 3$, is *bad* if each of the faces incident to it is either a 3-face, or a 4-face whose boundary forms a bad 4-cycle. We use $d_{k}^{H}(v)$ to denote the number of bad *k*-vertices adjacent to *v*. If there is no confusion in the context, we omit the letter *G* in $d_{G}(v)$, $d_{k}^{G}(v)$, $d_{k-1}^{G}(v)$, $d_{k-1}^{G}(v)$.

Suppose that ϕ is an ÅVDT-*k*-coloring of a graph *G* and $v \in V(G)$. Let $m_{\phi}(v)$ denote the sum of colors in $C_{\phi}(v)$. Obviously, for two adjacent vertices *u* and *v*, if $m_{\phi}(u) \neq m_{\phi}(v)$, then $C_{\phi}(u) \neq C_{\phi}(v)$. Two adjacent vertices *u* and *v* are called *conflict* under ϕ if $C_{\phi}(u) = C_{\phi}(v)$. An edge *uv* is said to be *legally colored* if its color is different from that of its adjacent elements in $V(G) \cup E(G)$ and no pair of new conflict vertices are produced.

The following famous Combinatorial Nullstellensatz will be frequently used in our proof.

Lemma 1 (Combinatorial Nullstellensatz, [1]). Let \mathbb{F} be an arbitrary field, and let $P = P(x_1, x_2, ..., x_n)$ be a polynomial in $\mathbb{F}[x_1, x_2, ..., x_n]$. Assume that the degree deg(P) of P equals $\sum_{i=1}^n k_i$ and the coefficient of $x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$ in P is non-zero, where each k_i is a non-negative integer. If $S_1, S_2, ..., S_n$ are subsets of \mathbb{F} with $|S_i| > k_i$, then there are $s_i \in S_i$ for i = 1, 2, ..., n so that $P(s_1, s_2, ..., s_n) \neq 0$.

3. Main results

The main result of this paper is as follows, whose proof is based on meticulous structural analysis and powerful discharging technique.

Theorem 3. Let G be a planar graph with $\Delta = 13$. Then $\chi_a^{"}(G) = 15$ if and only if G contains two adjacent 13-vertices.

Proof. If *G* contains two adjacent 13-vertices, then the previous discussion claims that $\chi_a''(G) \ge \Delta + 2 = 15$. Conversely, assume that *G* does not contain adjacent 13-vertices. It suffices to show $\chi_a''(G) \le 14$. Suppose that this is not true. Let *G* be a counterexample with |V(G)| + |E(G)| being as small as possible. Obviously, *G* is connected. For any edge $e \in E(G)$, let H = G - e. It is easy to see that $12 \le \Delta(H) \le 13$. If $\Delta(H) = 12$, then $\chi_a''(H) \le 12 + 2 = 14$ by Theorem 2. If $\Delta(H) = 13$, then $\chi_a''(H) \le 14$ by the minimality of *G*. Hence we always have $\chi_a''(H) \le 14$. Such discussion will be omitted in the following proof. Since *G* contains no adjacent 13-vertices, it is easy to verify that no leaf is adjacent to a 13-vertex. Let C = [1, 14] denote a set of 14 colors.

Remark 1. Assume that $v \in V(G)$ is a *k*-vertex with neighbors v_1, v_2, \ldots, v_k , where $1 \le k \le 6$. Let ϕ be a partial AVDT-14-coloring of *G* with *v* uncolored. Assume that $\phi(vv_i) = i$ for $i \in [1, k]$. Set $|\{\phi(v_1), \phi(v_2), \ldots, \phi(v_k)\} \cap [1, k]| = p$, say $\phi(v_1), \phi(v_2), \ldots, \phi(v_p) \in [1, k]$. Since $14 - k - (k - p) = (14 - 2k) + p \ge p + 2$, we can color *v* with a color in $[k+1, 14] \setminus \{\phi(v_{p+1}), \phi(v_{p+2}), \ldots, \phi(v_k)\}$ such that *v* does not conflict with v_1, v_2, \ldots, v_p . Hence ϕ is extended to the whole graph *G*.

By virtue of Remark 1, to obtain an AVDT-14-coloring of *G*, we may first erase the colors of 6⁻-vertices and finally recolor them after other vertices and edges have been legally colored.

Claim 1. There is no edge $uv \in E(G)$ such that $d(v) \leq 7$ and $d(u) \leq 5$.

Download English Version:

https://daneshyari.com/en/article/8902826

Download Persian Version:

https://daneshyari.com/article/8902826

Daneshyari.com