On a problem of partitions of the set of nonnegative integers with the same representation functions

Min Tang*, Shi-Qiang Chen
Department of Mathematics, Anhui Normal University, Wuhu 241003, PR China

ARTICLE INFO

Article history:

Received 19 February 2018
Received in revised form 12 July 2018
Accepted 16 July 2018

Keywords:

Partition
Representation function

Abstract

Dombi has shown that the set \mathbb{N} of all non-negative integers can be partitioned into two subsets with identical representation functions. In this paper, we prove that one cannot partition \mathbb{N} into more than two subsets with identical representation functions, while for any integer $k \geq 3$ there is a partition $\mathbb{N}=A_{1} \cup \cdots \cup A_{k}$ such that A_{i} and A_{k+1-i} have the same representation function for any integer $1 \leq i \leq k$. © 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathbb{N} be the set of all nonnegative integers. For a given set $S \subset \mathbb{N}$ the representation function $R_{S}(n)$ is defined as the number of solutions of the equation $n=s+s^{\prime}, s<s^{\prime}, s, s^{\prime} \in S$. In 2002, using the additive properties of ThueMorse sequence, Dombi [3] constructed two sets of nonnegative integers with infinite symmetric difference such that the corresponding representation functions are identical.

Theorem A (See [3, Theorem 1]). The set of positive integers can be partitioned into two subsets A and B such that $R_{A}(n)=R_{B}(n)$ for every nonnegative integer n.

Let \mathcal{A} be the set of those nonnegative integers with an even sum of binary digits in their base- 2 representation, and let $\mathcal{B}=\mathbb{N} \backslash \mathcal{A}$. The following extension of Dombi's result, implicitly present in [6], has appeared in an explicit form in [5].

Theorem B (See [5, Theorem 2]). Let C and D be sets of nonnegative integers such that $C \cup D=\mathbb{N}$ and $C \cap D=\emptyset, 0 \in C$. Then $R_{C}(n)=R_{D}(n)$ for every nonnegative integer n if and only if $C=\mathcal{A}$ and $D=\mathcal{B}$.

Dombi's paper was followed by a series of other papers studying a number of related problems; see, for instance, [1,2,4,7,8,10]. In [9], the first present author posed the following problem:

Problem 1. Given a positive integer $k(k \geq 3)$, does there exist a partition

$$
\mathbb{N}=\bigcup_{m=1}^{k} A_{m}, \quad A_{u} \cap A_{v}=\emptyset, u \neq v
$$

such that $R_{A_{u}}(n)=R_{A_{v}}(n)(1 \leq u \neq v \leq k)$ for all sufficiently large integers n ?

[^0]In this paper, we focus on Problem 1 and obtain the following results:
Theorem 1.1. Given a positive integer $k \geq 3$, there is no partition

$$
\mathbb{N}=\bigcup_{j=1}^{k} A_{j}, A_{u} \cap A_{v}=\emptyset, \quad 1 \leq u \neq v \leq k
$$

such that $R_{A_{u}}(n)=R_{A_{v}}(n)$ for every nonnegative integer n.
Theorem 1.2. Given a positive integer $k \geq 2$, there exists a partition

$$
\mathbb{N}=\bigcup_{j=1}^{k} A_{j}, \quad A_{u} \cap A_{v}=\emptyset, \quad 1 \leq u \neq v \leq k
$$

such that for $1 \leq i \leq k$ we have $R_{A_{i}}(n)=R_{A_{k+1-i}}(n)$ for every nonnegative integer n.

2. Proof of Theorem 1.1

Assume that there exists a partition

$$
\mathbb{N}=\bigcup_{j=1}^{k} A_{j}, A_{u} \cap A_{v}=\emptyset, 1 \leq u \neq v \leq k
$$

such that for every nonnegative integer n. Then we have

$$
\begin{equation*}
R_{A_{u}}(n)=R_{A_{v}}(n) \tag{2.1}
\end{equation*}
$$

Without loss of generality, we may assume that

$$
\begin{equation*}
\min A_{1}<\min A_{2}<\cdots<\min A_{k} \tag{2.2}
\end{equation*}
$$

Fact I. For $j=1, \ldots, k$, we have $\left|A_{j} \cap[0, k-1]\right|=1$.
In fact, if there exists an integer $u \in\{1, \ldots, k\}$ such that

$$
\begin{equation*}
\left|A_{u} \cap[0, k-1]\right| \geq 2, \tag{2.3}
\end{equation*}
$$

then there exists an integer $v \in\{1, \ldots, k\}$ such that

$$
\begin{equation*}
A_{v} \cap[0, k-1]=\emptyset \tag{2.4}
\end{equation*}
$$

By (2.3), we may assume that there exist two integers $0 \leq h \neq t \leq k-1$ and $h, t \in A_{u}$ such that

$$
R_{A_{u}}(h+t) \geq 1 .
$$

By (2.4) we know that if $R_{A_{v}}(n) \geq 1$ for $0 \leq n \leq 3 k-1$, then $n \geq 2 k$. Noting that $0<h+t<2 k-2$, we have

$$
R_{A_{v}}(h+t)=0 .
$$

Thus $R_{A_{u}}(h+t) \neq R_{A_{v}}(h+t)$, which contradicts (2.1).
By Fact I and (2.2) we have

$$
\begin{equation*}
j-1 \in A_{j} \cap[0, k-1], \quad j=1, \ldots, k . \tag{2.5}
\end{equation*}
$$

Fact II. For $j=1, \ldots, k$, we have

$$
\begin{equation*}
A_{j} \cap[k, 3 k-1]=\{2 k-j, 3 k-j\} \tag{2.6}
\end{equation*}
$$

In fact, if there exists an integer $u^{\prime} \in\{1, \ldots, k\}$ such that $\left|A_{u^{\prime}} \cap[k, 2 k-1]\right| \geq 2$, then there exists an integer $v^{\prime} \in\{1, \ldots, k\}$ such that

$$
\begin{equation*}
A_{v^{\prime}} \cap[k, 2 k-1]=\emptyset . \tag{2.7}
\end{equation*}
$$

Assume that $k \in A_{p}$ for some $p \in\{1, \ldots, k\}$. By (2.5), we have

$$
R_{A_{p}}(k+p-1) \geq 1
$$

https://daneshyari.com/en/article/8902828

Download Persian Version:

https://daneshyari.com/article/8902828

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: tmzzz2000@163.com (M. Tang).

