Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On a problem of partitions of the set of nonnegative integers with the same representation functions

Min Tang*, Shi-Qiang Chen

Department of Mathematics, Anhui Normal University, Wuhu 241003, PR China

ARTICLE INFO

Article history: Received 19 February 2018 Received in revised form 12 July 2018 Accepted 16 July 2018

Keywords: Partition Representation function

ABSTRACT

Dombi has shown that the set \mathbb{N} of all non-negative integers can be partitioned into two subsets with identical representation functions. In this paper, we prove that one cannot partition \mathbb{N} into more than two subsets with identical representation functions, while for any integer $k \geq 3$ there is a partition $\mathbb{N} = A_1 \cup \cdots \cup A_k$ such that A_i and A_{k+1-i} have the same representation function for any integer $1 \leq i \leq k$.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathbb{N} be the set of all nonnegative integers. For a given set $S \subset \mathbb{N}$ the representation function $R_S(n)$ is defined as the number of solutions of the equation n = s + s', s < s', s, $s' \in S$. In 2002, using the additive properties of Thue– Morse sequence, Dombi [3] constructed two sets of nonnegative integers with infinite symmetric difference such that the corresponding representation functions are identical.

Theorem A (See [3, Theorem 1]). The set of positive integers can be partitioned into two subsets A and B such that $R_A(n) = R_B(n)$ for every nonnegative integer n.

Let A be the set of those nonnegative integers with an even sum of binary digits in their base-2 representation, and let $B = \mathbb{N} \setminus A$. The following extension of Dombi's result, implicitly present in [6], has appeared in an explicit form in [5].

Theorem B (See [5, Theorem 2]). Let C and D be sets of nonnegative integers such that $C \cup D = \mathbb{N}$ and $C \cap D = \emptyset$, $0 \in C$. Then $R_C(n) = R_D(n)$ for every nonnegative integer n if and only if C = A and D = B.

Dombi's paper was followed by a series of other papers studying a number of related problems; see, for instance, [1,2,4,7,8,10]. In [9], the first present author posed the following problem:

Problem 1. Given a positive integer $k(k \ge 3)$, does there exist a partition

 $\mathbb{N} = \bigcup_{m=1}^{k} A_{m}, \quad A_{u} \cap A_{v} = \emptyset, \ u \neq v$

such that $R_{A_u}(n) = R_{A_v}(n)$ $(1 \le u \ne v \le k)$ for all sufficiently large integers *n*?

* Corresponding author. E-mail address: tmzzz2000@163.com (M. Tang).

https://doi.org/10.1016/j.disc.2018.07.015 0012-365X/© 2018 Elsevier B.V. All rights reserved.

In this paper, we focus on Problem 1 and obtain the following results:

Theorem 1.1. Given a positive integer $k \ge 3$, there is no partition

$$\mathbb{N} = \bigcup_{j=1}^{k} A_j, \ A_u \cap A_v = \emptyset, \ 1 \le u \ne v \le k$$

such that $R_{A_u}(n) = R_{A_v}(n)$ for every nonnegative integer n.

Theorem 1.2. Given a positive integer $k \ge 2$, there exists a partition

$$\mathbb{N} = \bigcup_{j=1}^{k} A_j, \ A_u \cap A_v = \emptyset, \ 1 \le u \ne v \le k$$

such that for $1 \le i \le k$ we have $R_{A_i}(n) = R_{A_{k+1-i}}(n)$ for every nonnegative integer n.

2. Proof of Theorem 1.1

1.

Assume that there exists a partition

$$\mathbb{N} = \bigcup_{j=1}^{n} A_j, \ A_u \cap A_v = \emptyset, \ 1 \le u \ne v \le k$$

such that for every nonnegative integer *n*. Then we have

$$R_{A_u}(n) = R_{A_v}(n). \tag{2.1}$$

Without loss of generality, we may assume that

$$\min A_1 < \min A_2 < \dots < \min A_k. \tag{2.2}$$

Fact I. For j = 1, ..., k, we have $|A_j \cap [0, k-1]| = 1$. In fact, if there exists an integer $u \in \{1, ..., k\}$ such that

$$|A_u \cap [0, k-1]| \ge 2,$$

then there exists an integer $v \in \{1, ..., k\}$ such that

$$A_v \cap [0, k-1] = \emptyset. \tag{2.4}$$

(2.3)

By (2.3), we may assume that there exist two integers $0 \le h \ne t \le k - 1$ and $h, t \in A_u$ such that

$$R_{A_u}(h+t) \geq 1.$$

By (2.4) we know that if $R_{A_v}(n) \ge 1$ for $0 \le n \le 3k - 1$, then $n \ge 2k$. Noting that 0 < h + t < 2k - 2, we have

$$R_{A_v}(h+t)=0.$$

Thus $R_{A_u}(h + t) \neq R_{A_v}(h + t)$, which contradicts (2.1). By Fact I and (2.2) we have

$$j-1 \in A_j \cap [0, k-1], \quad j=1, \dots, k.$$
 (2.5)

Fact II. For $j = 1, \ldots, k$, we have

$$A_j \cap [k, 3k-1] = \{2k-j, 3k-j\}.$$
(2.6)

In fact, if there exists an integer $u' \in \{1, ..., k\}$ such that $|A_{u'} \cap [k, 2k-1]| \ge 2$, then there exists an integer $v' \in \{1, ..., k\}$ such that

$$A_{\nu'} \cap [k, 2k-1] = \emptyset.$$
(2.7)

Assume that $k \in A_p$ for some $p \in \{1, ..., k\}$. By (2.5), we have

 $R_{A_p}(k+p-1) \geq 1.$

Download English Version:

https://daneshyari.com/en/article/8902828

Download Persian Version:

https://daneshyari.com/article/8902828

Daneshyari.com