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1. Introduction

Let N be the set of all nonnegative integers. For a given set S C N the representation function Rs(n) is defined as
the number of solutions of the equationn = s+ s',s < §,s,s € S.In 2002, using the additive properties of Thue-
Morse sequence, Dombi [3] constructed two sets of nonnegative integers with infinite symmetric difference such that the
corresponding representation functions are identical.

Theorem A (See [3, Theorem 1]). The set of positive integers can be partitioned into two subsets A and B such that R4(n) = Rg(n)
for every nonnegative integer n.

Let A be the set of those nonnegative integers with an even sum of binary digits in their base-2 representation, and let
B = N\ A. The following extension of Dombi’s result, implicitly present in [6], has appeared in an explicit form in [5].

Theorem B (See [5, Theorem 2]). Let C and D be sets of nonnegative integers such that CUD = NandCND = (4,0 € C. Then
Rc(n) = Rp(n) for every nonnegative integer n if and only if C = Aand D = B.

Dombi’s paper was followed by a series of other papers studying a number of related problems; see, for instance,
[1,2,4,7,8,10]. In [9], the first present author posed the following problem:

Problem 1. Given a positive integer k(k > 3), does there exist a partition

k
N=|JAn, ANA =0 uzv
m=1

such that Ry, (n) = Ra,(n) (1 < u # v < k) for all sufficiently large integers n?
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In this paper, we focus on Problem 1 and obtain the following results:

Theorem 1.1. Given a positive integer k > 3, there is no partition

k
N=JA, AvnA =0, 1<uz#v<k
j=1

such that Ra,(n) = Ra,(n) for every nonnegative integer n.

Theorem 1.2. Given a positive integer k > 2, there exists a partition

k
N=|JA, AvnA =0, 1<uz#v<k
j=1

such that for 1 <i < kwe have Ry,(n) = Ry, ,_,(n) for every nonnegative integer n.

2. Proof of Theorem 1.1

Assume that there exists a partition

k
N=|JA, AunA =0, 1<uz#v<k
j=1

such that for every nonnegative integer n. Then we have

Ry, (1) = Ra,(n). (2.1)

Without loss of generality, we may assume that
minA; < minA; < --- < minAy. (2.2)

Factl. Forj=1,...,k wehave |A;N[0,k—1]] =1.

In fact, if there exists an integer u € {1, ..., k} such that
Ay N[0, k—1]| = 2, (2.3)
then there exists an integer v € {1, ..., k} such that
A, N[0, k—1]1=9. (2.4)

By (2.3), we may assume that there exist two integers0 < h #t <k — 1and h, t € A, such that
Ra,(h+1t)> 1.

By (2.4) we know thatif Ry (n) > 1for 0 < n < 3k — 1, thenn > 2k. Noting that 0 < h 4+t < 2k — 2, we have
Ra,(h+1t)=0.

Thus Ry, (h + t) # Ra,(h + t), which contradicts (2.1).
By Fact I and (2.2) we have

j—1eAN[0,k—-1], j=1,... k. (2.5)
Factll. Forj =1, ...,k we have
AN [k, 3k — 1] = {2k —j, 3k — j}. (2.6)
In fact, if there exists an integer u’ € {1, ..., k} such that |Ay N[k, 2k—1]| > 2, then there exists aninteger v’ € {1, ..., k}
such that
Ay Nk, 2k—1]=0. (2.7)

Assume thatk € A, forsomep € {1, ..., k}. By (2.5), we have
Ray(k+p—1)=1.
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