Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Chromatic bounds for some classes of 2K₂-free graphs

T. Karthick^{a,*}, Suchismita Mishra^b

^a Computer Science Unit, Indian Statistical Institute, Chennai Centre, Chennai 600029, India
^b Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India

ARTICLE INFO

Article history: Received 2 February 2017 Received in revised form 17 April 2018 Accepted 18 July 2018

Keywords: Chromatic number Clique number Graph classes 2K₂-free graphs

ABSTRACT

A hereditary class \mathcal{G} of graphs is χ -bounded if there is a χ -binding function, say f such that $\chi(G) \leq f(\omega(G))$, for every $G \in \mathcal{G}$, where $\chi(G)(\omega(G))$ denotes the chromatic (clique) number of G. It is known that for every $2K_2$ -free graph G, $\chi(G) \leq \binom{\omega(G)+1}{2}$, and the class of $(2K_2, 3K_1)$ -free graphs does not admit a linear χ -binding function. In this paper, we are interested in classes of $2K_2$ -free graphs that admit a linear χ -binding function. We show that the class of $(2K_2, H)$ -free graphs, where $H \in \{K_1 + P_4, K_1 + C_4, \overline{P_2 \cup P_3}, HVN, K_5 - e, K_5\}$ admits a linear χ -binding function. Also, we show that some superclasses of $2K_2$ -free graphs are χ -bounded.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

All our graphs in this paper are simple, finite and undirected. For notation and terminology that are not defined here, we refer to West [21]. As usual, let P_n , C_n , K_n denote the induced path, induced cycle and complete graph on n vertices respectively. Let $K_{p,q}$ be the complete bipartite graph with classes of size p and q. For a graph G, the complement of G is denoted by \overline{G} . If \mathcal{F} is a family of graphs, a graph G is said to be \mathcal{F} -free if it contains no induced subgraph isomorphic to any member of \mathcal{F} . If G_1 and G_2 are two vertex disjoint graphs, then their union $G_1 \cup G_2$ is the graph with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. Similarly, their join $G_1 + G_2$ is the graph with $V(G_1 + G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) \cup \{(x, y) \mid x \in V(G_1), y \in V(G_2)\}$. For any positive integer k, kG denotes the union of k graphs each isomorphic to G.

A proper coloring (or simply coloring) of a graph *G* is an assignment of colors to the vertices of *G* such that no two adjacent vertices receive the same color. The minimum number of colors required to color *G* is called the *chromatic number* of *G*, and is denoted by $\chi(G)$. A *clique* in a graph *G* is a set of vertices that are pairwise adjacent in *G*. The *clique number* of *G*, denoted by $\omega(G)$, is the size of a maximum clique in *G*. Obviously, for any graph *G*, we have $\chi(G) \ge \omega(G)$. The existence of triangle-free graphs with large chromatic number (see [17] for a construction of such graphs) shows that for a general class of graphs, there is no upper bound on the chromatic number as a function of clique number.

A graph *G* is called *perfect* if $\chi(H) = \omega(H)$, for every induced subgraph *H* of *G*; otherwise it is called *imperfect*. A hereditary class *G* of graphs is said to be χ -bounded [11] if there exists a function *f* (called a χ -binding function of *G*) such that $\chi(G) \leq f(\omega(G))$, for every $G \in \mathcal{G}$. If \mathcal{G} is the class of *H*-free graphs for some graph *H*, then *f* is denoted by *f*_H. We refer to [18] for an extensive survey of χ -bounds for various classes of graphs.

The class of $2K_2$ -free graphs and its related classes have been well studied in various contexts in the literature; see [3]. Here, we would like to focus on showing χ -binding functions for some classes of graphs related to $2K_2$ -free graphs. Wagon [20] showed that the class of mK_2 -free graphs admits an $O(x^{2m-2}) \chi$ -binding function for all $m \ge 1$. In particular, he

* Corresponding author. E-mail address: karthick@isichennai.res.in (T. Karthick).

https://doi.org/10.1016/j.disc.2018.07.018 0012-365X/© 2018 Elsevier B.V. All rights reserved.

Fig. 1. Some special graphs.

Table 1

Known chromatic bounds for $(2K_2, H)$ -free graphs, where H is any $2K_2$ -free graph on 5 vertices with $\alpha(H) = 2$, and the graph $X \in \{Kite, K_4 \cup K_1, (K_3 \cup K_1) + K_1\}$.

Graph class C	χ -bound for $G \in C$	
$(2K_2, \overline{P_5})$ -free graphs	$\lfloor \frac{3\omega(G)}{2} \rfloor$	[10]
$(2K_2, C_5)$ -free graphs	$\omega(G)^{3/2}$	[12]
$(2K_2, K_1 + P_4)$ -free graphs	$\omega(G) + 1$	(Corollary 1)
$(2K_2, K_1 + C_4)$ -free graphs	$\omega(G) + 5$	(Corollary 2)
$(2K_2, \overline{P_2 \cup P_3})$ -free graphs	$\omega(G) + 1$	(Corollary 3)
(2K ₂ , HVN)-free graphs	$\omega(G) + 3$	(Corollary 4)
$(2K_2, K_5 - e)$ -free graphs	$\omega(G) + 4$	(Corollary 5)
$(2K_2, K_5)$ -free graphs	$2\omega(G) + 1 \leq 9$	(Corollary 6)
$(2K_2, X)$ -free graphs	$\binom{\omega(G)+1}{2}$	[20]

showed that $f_{2K_2}(x) = \binom{x+1}{2}$, and the best known lower bound is $\frac{R(C_4, K_{x+1})}{3}$, where $R(C_4, K_{x+1})$ denotes the smallest k such that every graph on k vertices contains either a clique of size x + 1 or $2K_2$ [11]. This lower bound is non-linear because Chung [8] showed that $R(C_4, K_t)$ is at least $t^{1+\epsilon}$ for some $\epsilon > 0$. It is interesting to note that Brause et al. [4] showed that the class of $(2K_2, 3K_1)$ -free graphs does not admit a linear χ -binding function. It follows that the class of $(2K_2, H)$ -free graphs, where H is any $2K_2$ -free graph with independence number $\alpha(H) \ge 3$, does not admit a linear χ -binding function.

Here we are interested in classes of $2K_2$ -free graphs that admit a linear χ -binding function, in particular, some classes of $2K_2$ -free graphs that admit a 'special' linear χ -binding function f(x) = x + c, where c is a positive integer, that is, $2K_2$ -free graphs G such that $\chi(G) \leq \omega(G) + c$. If c = 1, then this special upper bound is called the *Vizing bound* for the chromatic number, and is well studied in the literature; see [14,18] and the references therein. Brause et al. [4] showed that if G is a connected $(2K_2, K_{1,3})$ -free graph with independence number $\alpha(G) \geq 3$, then G is perfect. It follows from a result of [13] that if G is a $(2K_2, paw)$ -free graph, then either G is perfect or $\chi(G) = 3$ and $\omega(G) = 2$ (see also [4]). Nagy and Szentmiklóssy (see [11]) showed that if G is a $(2K_2, K_4)$ -free graph, then $\chi(G) \leq \omega(G) + 1$, and the equality holds if and only if G is not a split-graph. It follows from a result of [14] that if G is a $(2K_2, R_4 - e)$ -free graph, then $\chi(G) \leq \omega(G) + 1$. Fouquet et al. [10] showed that if G is a $(2K_2, R_5)$ -free graph, then $\chi(G) \leq \lfloor \frac{3\omega(G)}{2} \rfloor$, and the bound is tight. Brause et al. [4] showed that if G is a $(2K_2, K_1 + P_4)$ -free graph, then $\chi(G) \leq 2\omega(G)$.

In this paper, by using structural results, we show that the class of $(2K_2, H)$ -free graphs, where $H \in \{K_1 + P_4, K_1 + C_4, \overline{P_2 \cup P_3}, HVN, K_5 - e\}$ admits a special linear χ -binding function f(x) = x + c, where c is a positive integer; see Fig. 1. We also show that the class of $(2K_2, K_5)$ -free graphs admits a linear χ -binding function. Table 1 shows the known chromatic bounds for a $(2K_2, H)$ -free graph G, where H is any $2K_2$ -free graph on 5 vertices with $\alpha(H) = 2$. We remark that some of the cited bounds are consequences of much stronger results available in the literature. Finally, we show χ -binding functions for some superclasses of $2K_2$ -free graphs.

2. Notation, terminology, and preliminaries

For a positive integer *k*, we simply write $\langle k \rangle$ to denote the set $\{1, 2, ..., k\}$.

Let *G* be a graph, with vertex-set *V*(*G*) and edge-set *E*(*G*). For $x \in V(G)$, *N*(*x*) denotes the set of all neighbors of *x* in *G*. For any two disjoint subsets *S*, $T \subseteq V(G)$, [*S*, *T*] denotes the set of edges { $e \in E(G) | e$ has one end in *S* and the other in *T*}. Also, for $S \subseteq V(G)$, let *G*[*S*] denote the subgraph induced by *S* in *G*, and for convenience we simply write [*S*] instead of *G*[*S*]. If *H* is an induced subgraph of *G*, then we say that *G* contains *H*. Note that if H_1 and H_2 are any two graphs, and if *G* is (H_1 , H_2)-free, then \overline{G} is ($\overline{H_1}$, $\overline{H_2}$)-free.

A *k*-clique covering of a graph *G* is a partition $(V_1, V_2, ..., V_k)$ of V(G) such that V_i is a clique, for each $i \in \langle k \rangle$. The clique covering number of the graph *G*, denoted by $\theta(G)$, is the minimum integer *k* such that *G* admits a *k*-clique covering. An *independent/stable* set in a graph *G* is a set of vertices that are pairwise non-adjacent in *G*. The *independence number* of *G*, denoted by $\alpha(G)$, is the size of a maximum independent set in *G*. Clearly, for any graph *G*, we have $\chi(G) = \theta(\overline{G})$ and $\omega(G) = \alpha(\overline{G})$.

Download English Version:

https://daneshyari.com/en/article/8902829

Download Persian Version:

https://daneshyari.com/article/8902829

Daneshyari.com