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other hand, there are several properties of the DP-chromatic number that show that it
differs with the list chromatic number. In this note we show one such property. It is well
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1. Introduction

In this note all graphs are nonempty, finite, simple graphs unless otherwise noted. Generally speaking we follow West [ 13]
for terminology and notation. For this note the set of natural numbersis N = {1, 2, 3...}. The natural log function is denoted
log. Given a set A, P(A) is the power set of A. Also, forany k € N, [k] = {1,2,3,...,k}.IfGisagraphand S, U C V(G), we use
G[S] for the subgraph of G induced by S, and we use E(S, U) for the subset of E(G) with one endpoint in S and one endpoint
in U. Also, if v € V(G) we use Ng(v) for the set of neighbors of v in G.

1.1. List coloring

List coloring is a well known variation on the classic vertex coloring problem, and it was introduced independently by
Vizing [ 12] and Erdés, Rubin, and Taylor [7] in the 1970s. In the classic vertex coloring problem we wish to color the vertices
of a graph G with as few colors as possible so that adjacent vertices receive different colors, a so-called proper coloring. The
chromatic number of a graph, denoted x(G), is the smallest k such that G has a proper coloring that uses k colors. For list
coloring, we associate a list assignment, L, with a graph G such that each vertex v € V(G) is assigned a list of colors L(v) (we
say L is a list assignment for G). The graph G is L-colorable if there exists a proper coloring f of G such that f(v) € L(v) for
each v € V(G) (we refer to f as a proper L-coloring of G). A list assignment L is called a k-assignment for G if |L(v)| = k for
each v € V(G). The list chromatic number of a graph G, denoted x,(G), is the smallest k such that G is L-colorable whenever L
is a k-assignment for G. We say G is k-choosable if k > x,(G).

It is immediately obvious that for any graph G, x(G) < x¢(G). Erdés, Rubin, and Taylor [7] studied the choosability of Kp n
and observed that if m = 2"_1), then x¢(Kmn.m) > k. The following related result is often attributed to Vizing [12] or Erdés,
Rubin, and Taylor [7], but it is best described as a folklore result.

Theorem 1. For k € N, x,(Ki..) = k + 1ifand only if t > k¥,

We study the analogue of Theorem 1 for DP-coloring.
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1.2. DP-coloring

Dvorak and Postle [6] introduced DP-coloring (they called it correspondence coloring) in 2015 in order to prove that every
planar graph without cycles of lengths 4 to 8 is 3-choosable. Intuitively, DP-coloring is a generalization of list coloring where
each vertex in the graph still gets a list of colors but identification of which colors are different can vary from edge to edge.
Following [5], we now give the formal definition. Suppose G is a graph. A cover of G is a pair # = (L, H) consisting of a graph
H and a function L : V(G) — P(V(H)) satisfying the following four requirements:

(1) the sets {L(u) : u € V(G)} form a partition of V(H);

(2) for every u € V(G), the graph H[L(u)] is complete;

(3)if Eg(L(u), L(v)) is nonempty, then u = v or uv € E(G);

(4) ifuv € E(G), then Ey(L(u), L(v)) is a matching (the matching may be empty).

Suppose H = (L, H) is a cover of G. We say # is k-fold if |[L(u)| = k for each u € V(G). An H-coloring of G is an independent set
in H of size |V(G)|. It is immediately clear that an independent set I C V(H) is an H-coloring of G if and only if [ N L(u)| = 1
for each u € V(G).

The DP-chromatic number of a graph G, xpp(G), is the smallest k € N such that G admits an #-coloring for every k-fold
cover H of G. Suppose we wish to prove xpp(G) < k. Since every k-fold cover of G is isomorphic to a subgraph of some k-fold
cover, H' = (L', H'), of G with the property that Ey/(L'(u), L'(v)) is a perfect matching whenever uv € E(G), we need only
show that G has an #H-coloring whenever H# = (L, H) is a k-fold cover of G such that Ey(L(u), L(v)) is a perfect matching for
each uv € E(G).

Given a list assignment, L, for a graph G, it is easy to construct a cover H of G such that G has an #H-coloring if and only if
G has a proper L-coloring (see [5]). It follows that x¢(G) < xpp(G). This inequality may be strict since it is easy to prove that
xpp(Cp) = 3 whenever n > 3, but the list chromatic number of any even cycle is 2 (see [5] and [7]).

We now briefly discuss some similarities between DP-coloring and list coloring. First, notice that like k-choosability, the
graph property of having DP-chromatic number at most k is monotone. It is also clear that, as in the context of list coloring,
if xpp(G) = k, then an #H-coloring of G exists whenever # is an m-fold cover of G with m > k. The coloring number of a graph
G, denoted col(G), is the smallest integer d for which there exists an ordering, vq, vo, ..., v,, of the elements in V(G) such
that each vertex v; has at most d — 1 neighbors among v, v, ..., vi_1. It is easy to prove that x,(G) < xpp(G) < col(G).
Thomassen [11] famously proved that every planar graph is 5-choosable, and Dvorak and Postle [6] observed that the
DP-chromatic number of every planar graph is at most 5. Also, Molloy [10] recently improved a theorem of Johansson
[9] by showing that every triangle-free graph G with maximum degree A(G) satisfies x,(G) < (1 + o(1))A(G)/log(A(G)).
Bernshteyn [3] subsequently showed that this bound also holds for the DP-chromatic number.

On the other hand, Bernshteyn [4] showed that if the average degree of a graph G is d, then xpp(G) = $2(d/log(d)). This is
in stark contrast to the celebrated result of Alon [ 1] which says x,(G) = §2(log(d)). It was also recently shown in [5] that there
exist planar bipartite graphs with DP-chromatic number 4 even though the list chromatic number of any planar bipartite
graph is at most 3 [2]. A famous result of Galvin [8] says that if G is a bipartite multigraph and L(G) is the line graph of G, then
x¢(L(G)) = x(L(G)) = A(G). However, it is also shown in [5] that every d-regular graph G satisfies xpp(L(G)) > d + 1.

1.3. Outline of results and an open question

In this note we present some results on the DP-chromatic number of complete bipartite graphs. By what was mentioned
in the previous subsection, we know that if k, t € N, xpp(Kk) < col(Ki ;) < k + 1. For the remainder of this note, for each
k € N, let (k) be the smallest natural number I such that xpp(Ki ;) = k + 1. We have that (k) exists for each k € N since
we know by Theorem 1,

k =+ 1= Xl(Kk.kk) < XDP(Kk,k") < k + 1.

This means that ;(k) < k* for each k € N. The following proposition is also clear.
Proposition 2. For k € N, xpp(Ky ;) = k+ 1ifand only if t > u(k)

Proof. If t > pu(k), then k + 1 = xpp(Ki uk)) < xpp(Kie) < k + 1 since K ,x) is a subgraph of K ;. Conversely, if
xop(Ki¢) = k+ 1, then (k) < t by the definition of (k). O

Computing p(k) is easy when k = 1,2. Clearly, u(1) = 1. Also, ;(2) = 2 follows from the fact that xpp(K3,1) < col(Kz 1) =
2 and the fact that K3  is a 4-cycle which implies xpp(K32) = 3. We have a tedious argument that shows p(3) = 6, which
for the sake of brevity, we do not present in this note. The following question leads to the discovery of both results in this
note.

Question 3. For each k > 4, what is the exact value of u(k)?

We obtain an upper bound and lower bound on w(k). Our first result gives us a lower bound.
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