EI SEVIER

Contents lists available at ScienceDirect

## **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc



Note

# A note on the DP-chromatic number of complete bipartite graphs



Jeffrey A. Mudrock

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, United States

#### ARTICLE INFO

Article history:
Received 24 March 2018
Received in revised form 1 August 2018
Accepted 2 August 2018

Keywords: Graph coloring List coloring DP-coloring

#### ABSTRACT

DP-coloring (also called correspondence coloring) is a generalization of list coloring recently introduced by Dvořák and Postle. Several known bounds for the list chromatic number of a graph G,  $\chi_\ell(G)$ , also hold for the DP-chromatic number of G,  $\chi_{DP}(G)$ . On the other hand, there are several properties of the DP-chromatic number that show that it differs with the list chromatic number. In this note we show one such property. It is well known that  $\chi_\ell(K_{k,t}) = k+1$  if and only if  $t \geq k^k$ . We show that  $\chi_{DP}(K_{k,t}) = k+1$  if  $t \geq 1+(k^k/k!)(\log(k!)+1)$ , and we show that  $\chi_{DP}(K_{k,t}) < k+1$  if  $t < k^k/k!$ .

© 2018 Elsevier B.V. All rights reserved.

#### 1. Introduction

In this note all graphs are nonempty, finite, simple graphs unless otherwise noted. Generally speaking we follow West [13] for terminology and notation. For this note the set of natural numbers is  $\mathbb{N} = \{1, 2, 3, ...\}$ . The natural log function is denoted log. Given a set A,  $\mathcal{P}(A)$  is the power set of A. Also, for any  $k \in \mathbb{N}$ ,  $[k] = \{1, 2, 3, ..., k\}$ . If G is a graph and S,  $U \subseteq V(G)$ , we use G[S] for the subgraph of G induced by S, and we use  $E_G(S, U)$  for the subset of E(G) with one endpoint in S and one endpoint in S. Also, if S if S is a graph and S in S and one endpoint in S and one endpoint in S and one endpoint in S is a graph and S in S and one endpoint in S and one endpoint in S and one endpoint in S and S is a graph and S in S and one endpoint in S and S is a graph and S in S and S in S i

#### 1.1. List coloring

List coloring is a well known variation on the classic vertex coloring problem, and it was introduced independently by Vizing [12] and Erdős, Rubin, and Taylor [7] in the 1970s. In the classic vertex coloring problem we wish to color the vertices of a graph G with as few colors as possible so that adjacent vertices receive different colors, a so-called *proper coloring*. The chromatic number of a graph, denoted  $\chi(G)$ , is the smallest k such that G has a proper coloring that uses k colors. For list coloring, we associate a *list assignment*, L, with a graph G such that each vertex  $v \in V(G)$  is assigned a list of colors L(v) (we say L is a list assignment for G). The graph G is L-colorable if there exists a proper coloring f of G such that  $f(v) \in L(v)$  for each  $v \in V(G)$  (we refer to f as a proper L-coloring of G). A list assignment L is called a K-assignment for G if K is K-colorable whenever K is a K-assignment for K. We say K is K-colorable if K is the smallest K such that K is K-colorable whenever K is a K-assignment for K. We say K is K-choosable if K is K-colorable if K is K-colorable whenever K is a K-assignment for K.

It is immediately obvious that for any graph G,  $\chi(G) \leq \chi_{\ell}(G)$ . Erdős, Rubin, and Taylor [7] studied the choosability of  $K_{m,m}$  and observed that if  $m = \binom{2k-1}{k}$ , then  $\chi_{\ell}(K_{m,m}) > k$ . The following related result is often attributed to Vizing [12] or Erdős, Rubin, and Taylor [7], but it is best described as a folklore result.

**Theorem 1.** For  $k \in \mathbb{N}$ ,  $\chi_{\ell}(K_{k,t}) = k+1$  if and only if  $t \geq k^k$ .

We study the analogue of Theorem 1 for DP-coloring.

E-mail address: jmudrock@hawk.iit.edu.

#### 1.2. DP-coloring

Dvořák and Postle [6] introduced DP-coloring (they called it correspondence coloring) in 2015 in order to prove that every planar graph without cycles of lengths 4 to 8 is 3-choosable. Intuitively, DP-coloring is a generalization of list coloring where each vertex in the graph still gets a list of colors but identification of which colors are different can vary from edge to edge. Following [5], we now give the formal definition. Suppose G is a graph. A *cover* of G is a pair  $\mathcal{H} = (L, H)$  consisting of a graph H and a function  $L: V(G) \to \mathcal{P}(V(H))$  satisfying the following four requirements:

- (1) the sets  $\{L(u): u \in V(G)\}\$  form a partition of V(H);
- (2) for every  $u \in V(G)$ , the graph H[L(u)] is complete;
- (3) if  $E_H(L(u), L(v))$  is nonempty, then u = v or  $uv \in E(G)$ ;
- (4) if  $uv \in E(G)$ , then  $E_H(L(u), L(v))$  is a matching (the matching may be empty).

Suppose  $\mathcal{H} = (L, H)$  is a cover of G. We say  $\mathcal{H}$  is k-fold if |L(u)| = k for each  $u \in V(G)$ . An  $\mathcal{H}$ -coloring of G is an independent set in H of size |V(G)|. It is immediately clear that an independent set  $I \subseteq V(H)$  is an  $\mathcal{H}$ -coloring of G if and only if  $|I \cap L(u)| = 1$  for each  $u \in V(G)$ .

The *DP-chromatic number* of a graph G,  $\chi_{DP}(G)$ , is the smallest  $k \in \mathbb{N}$  such that G admits an  $\mathcal{H}$ -coloring for every k-fold cover  $\mathcal{H}$  of G. Suppose we wish to prove  $\chi_{DP}(G) \leq k$ . Since every k-fold cover of G is isomorphic to a subgraph of some k-fold cover,  $\mathcal{H}' = (L', H')$ , of G with the property that  $E_{H'}(L'(u), L'(v))$  is a perfect matching whenever  $uv \in E(G)$ , we need only show that G has an  $\mathcal{H}$ -coloring whenever  $\mathcal{H} = (L, H)$  is a k-fold cover of G such that  $E_H(L(u), L(v))$  is a perfect matching for each  $uv \in E(G)$ .

Given a list assignment, L, for a graph G, it is easy to construct a cover H of G such that G has an H-coloring if and only if G has a proper L-coloring (see [5]). It follows that  $\chi_{\ell}(G) \leq \chi_{DP}(G)$ . This inequality may be strict since it is easy to prove that  $\chi_{DP}(C_n) = 3$  whenever  $n \geq 3$ , but the list chromatic number of any even cycle is 2 (see [5] and [7]).

We now briefly discuss some similarities between DP-coloring and list coloring. First, notice that like k-choosability, the graph property of having DP-chromatic number at most k is monotone. It is also clear that, as in the context of list coloring, if  $\chi_{DP}(G) = k$ , then an  $\mathcal{H}$ -coloring of G exists whenever  $\mathcal{H}$  is an m-fold cover of G with  $m \geq k$ . The coloring number of a graph G, denoted  $\operatorname{col}(G)$ , is the smallest integer d for which there exists an ordering,  $v_1, v_2, \ldots, v_n$ , of the elements in V(G) such that each vertex  $v_i$  has at most d-1 neighbors among  $v_1, v_2, \ldots, v_{i-1}$ . It is easy to prove that  $\chi_{\ell}(G) \leq \chi_{DP}(G) \leq \operatorname{col}(G)$ . Thomassen [11] famously proved that every planar graph is 5-choosable, and Dvořák and Postle [6] observed that the DP-chromatic number of every planar graph is at most 5. Also, Molloy [10] recently improved a theorem of Johansson [9] by showing that every triangle-free graph G with maximum degree  $\Delta(G)$  satisfies  $\chi_{\ell}(G) \leq (1 + o(1))\Delta(G)/\log(\Delta(G))$ . Bernshteyn [3] subsequently showed that this bound also holds for the DP-chromatic number.

On the other hand, Bernshteyn [4] showed that if the average degree of a graph G is d, then  $\chi_{DP}(G) = \Omega(d/\log(d))$ . This is in stark contrast to the celebrated result of Alon [1] which says  $\chi_{\ell}(G) = \Omega(\log(d))$ . It was also recently shown in [5] that there exist planar bipartite graphs with DP-chromatic number 4 even though the list chromatic number of any planar bipartite graph is at most 3 [2]. A famous result of Galvin [8] says that if G is a bipartite multigraph and L(G) is the line graph of G, then  $\chi_{\ell}(L(G)) = \chi(L(G)) = \Delta(G)$ . However, it is also shown in [5] that every d-regular graph G satisfies  $\chi_{DP}(L(G)) \geq d+1$ .

#### 1.3. Outline of results and an open question

In this note we present some results on the DP-chromatic number of complete bipartite graphs. By what was mentioned in the previous subsection, we know that if  $k, t \in \mathbb{N}$ ,  $\chi_{DP}(K_{k,t}) \leq \operatorname{col}(K_{k,t}) \leq k+1$ . For the remainder of this note, for each  $k \in \mathbb{N}$ , let  $\mu(k)$  be the smallest natural number l such that  $\chi_{DP}(K_{k,l}) = k+1$ . We have that  $\mu(k)$  exists for each  $k \in \mathbb{N}$  since we know by Theorem 1,

$$k+1 = \chi_{\ell}(K_{k,k^k}) \le \chi_{DP}(K_{k,k^k}) \le k+1.$$

This means that  $\mu(k) < k^k$  for each  $k \in \mathbb{N}$ . The following proposition is also clear.

**Proposition 2.** For  $k \in \mathbb{N}$ ,  $\chi_{DP}(K_{k,t}) = k+1$  if and only if  $t > \mu(k)$ 

**Proof.** If  $t \ge \mu(k)$ , then  $k+1 = \chi_{DP}(K_{k,\mu}(k)) \le \chi_{DP}(K_{k,t}) \le k+1$  since  $K_{k,\mu}(k)$  is a subgraph of  $K_{k,t}$ . Conversely, if  $\chi_{DP}(K_{k,t}) = k+1$ , then  $\mu(k) \le t$  by the definition of  $\mu(k)$ .  $\square$ 

Computing  $\mu(k)$  is easy when k=1,2. Clearly,  $\mu(1)=1$ . Also,  $\mu(2)=2$  follows from the fact that  $\chi_{DP}(K_{2,1}) \leq \operatorname{col}(K_{2,1})=2$  and the fact that  $K_{2,2}$  is a 4-cycle which implies  $\chi_{DP}(K_{2,2})=3$ . We have a tedious argument that shows  $\mu(3)=6$ , which for the sake of brevity, we do not present in this note. The following question leads to the discovery of both results in this note.

**Question 3.** For each  $k \ge 4$ , what is the exact value of  $\mu(k)$ ?

We obtain an upper bound and lower bound on  $\mu(k)$ . Our first result gives us a lower bound.

### Download English Version:

# https://daneshyari.com/en/article/8902835

Download Persian Version:

https://daneshyari.com/article/8902835

Daneshyari.com