ELSEVIER

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On two upper bounds for hypersurfaces involving a Thas' invariant

Andrea Luigi Tironi

Departamento de Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile

ARTICLE INFO

Article history: Received 1 April 2018 Received in revised form 12 July 2018 Accepted 17 July 2018

Keywords: Hypersurfaces Finite fields Number of rational points

ABSTRACT

Let X^n be a hypersurface in \mathbb{P}^{n+1} with $n \geq 1$ defined over a finite field \mathbb{F}_q of q elements. In this note, we classify, up to projective equivalence, hypersurfaces X^n as above which reach two elementary upper bounds for the number of \mathbb{F}_q -points on X^n which involve a Thas' invariant.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathbb{F}_q be a finite field with q elements, where $q=p^r$ for some prime p and some positive integer r, \mathbb{P}^{n+1} be the projective space over \mathbb{F}_q of dimension n+1, and X^n be a hypersurface in \mathbb{P}^{n+1} defined over \mathbb{F}_q of degree $d\geq 2$ and dimension $n\geq 1$. There is a very rich literature on the general problem of counting or finding bounds on the number of rational points of certain projective varieties defined over finite fields. Since so far only a few things are known about it, many authors addressed their attention to the problem of finding good upper bounds for the number of \mathbb{F}_q -points of projective varieties and hypersurfaces defined over a finite field \mathbb{F}_q (see, e.g., [1,2,8,9] and references therein). In particular, several years ago, Thas defined in [13] an invariant k_{X^n} of X^n , that is, the maximum dimension k_{X^n} of an \mathbb{F}_q -linear subspace of \mathbb{P}^{n+1} which is contained in X^n , and obtained an upper bound for the number $N_q(X^n)$ of \mathbb{F}_q -points of X^n which involved this invariant k_{X^n} . Recently, Homma and Kim established the following elementary upper bound involving k_{X^n} (cf. [7, Theorem 3.2]),

$$N_{a}(X^{n}) \le (d-1)q^{k_{X^{n}}}N_{a}(\mathbb{P}^{n-k_{X^{n}}}) + N_{a}(\mathbb{P}^{k_{X^{n}}}), \tag{1}$$

which is sharp for $k_{X^n} > 0$. Moreover, they proved that (1) is better than Thas' upper bound (see, [7, §7.1]). Finally, in [7] the authors gave the complete list of nonsingular hypersurfaces X^n in \mathbb{P}^{n+1} with n even which reach the equality in (1) for $k_{X^n} = \frac{n}{n}$ (see [7, Theorem 4.1]).

The main purpose of this article is to re-prove in an easy way the Homma–Kim's elementary upper bound (1) for $k_{X^n} > 0$, extending this also to the case $k_{X^n} = 0$, and to give a complete list of hypersurfaces X^n in \mathbb{P}^{n+1} which reach this bound, independently of the parity of n and the singularities of X^n . In particular, observe that $k_{X^n} \leq n$ and note that the right hand of the inequality in (1) increases with k_{X^n} . Thus, the upper bound in (1) reduces to the Segre–Serre–Sørensen's upper bound [10,11] and [12] for the general case $k_{X^n} \leq n$ by replacing n to k_{X^n} , and it becomes the Homma–Kim's elementary bound proved in [5] for the case of hypersurfaces X^n which does not admit \mathbb{F}_q -linear components, that is, when $k_{X^n} \leq n-1$, by substituting n-1 to k_{X^n} . Furthermore, in both of the above cases, a complete list of hypersurfaces X^n in \mathbb{P}^{n+1} achieving the upper bound in (1) with $k_{X^n} = n, n-1$ is given in [11] and [14], respectively.

Let W be an algebraic set in \mathbb{P}^{n+1} defined by equations over \mathbb{F}_q and denote by $Sing(W)(\mathbb{F}_q)$ the set of singular \mathbb{F}_q -points of W and by $\mathbb{P}^s*W\subset\mathbb{P}^{n+1}$ the cone over W with vertex \mathbb{P}^s for some $s\in\mathbb{Z}_{\geq 0}$ such that $s\leq n-\dim W$. Therefore, keeping in mind the two above cases, for $0 < k_{X^n} < n$ we obtain the following classification result.

Theorem 1 (Cases $0 < k_{X^n} \le n$). Let $X^n \subset \mathbb{P}^{n+1}$ be a hypersurface of degree $d \ge 2$ and dimension $n \ge 1$ defined over \mathbb{F}_a . Define

 $k_{X^n} := \max \{h \mid \text{there exists an } \mathbb{F}_a\text{-linear space } \mathbb{P}^h \subset X^n\}$

and suppose that $0 < k_{X^n} \le n$. Then

$$N_a(X^n) \leq (d-1)q^{k_{X^n}}N_a(\mathbb{P}^{n-k_{X^n}}) + N_a(\mathbb{P}^{k_{X^n}})$$

and equality holds if and only if one of the following possibilities occurs:

- (I) $k_{X^n} = n$ and X^n is a union of d hyperplanes over \mathbb{F}_q that contain a common \mathbb{F}_q -linear subspace of codimension 2 in \mathbb{P}^{n+1} ;
- (II) $0 < k_{X^n} < n-1$ and one of the following cases can occur:
 - (1) d = q + 1 and X^n is a space-filling hypersurface

$$(X_0,\ldots,X_{n+1}) A^t(X_0^q,\ldots,X_{n+1}^q) = 0,$$

where $A = \left(a_{ij}\right)_{i,j=1,\dots,n+2}$ is an $(n+2) \times (n+2)$ matrix such that ${}^t\!A = -A$ and $a_{kk} = 0$ for every $k = 1,\dots,n+2$; moreover, X^n is nonsingular if and only if det $A \neq 0$; in particular, if n is odd, then X^n is singular;

- (2) $d = \sqrt{q} + 1$ and
 - (a) n = 2h with $h \in \mathbb{Z}_{>1}$, $1 \le k_{\chi^{2h}} \le 2h 1$ and one of the following two cases holds:
 - (i) if $\operatorname{Sing}(X^{2h})(\mathbb{F}_q) = \emptyset$, then $k_{X^{2h}} = h$ and X^{2h} is projectively equivalent to a nonsingular Hermitian hypersurface; (ii) if $\operatorname{Sing}(X^{2h})(\mathbb{F}_q) \neq \emptyset$, then $h \geq 2$ and, up to projective equivalence, we have

$$X^{2h} = \begin{cases} \mathbb{P}^1 * X_H^{2h-2} , & k_{X^{2h}} = h+1 \\ \mathbb{P}^3 * X_H^{2h-4} , & k_{X^{2h}} = h+2 \\ \dots \\ \mathbb{P}^{2h-3} * X_H^2 , & k_{X^{2h}} = h+(h-1) ; \end{cases}$$

(b) n = 2h + 1 with $h \in \mathbb{Z}_{>1}$, $1 \le k_{\chi^{2h+1}} \le 2h$ and, up to projective equivalence, we have

$$X^{2h+1} = \begin{cases} \mathbb{P}^0 * X_H^{2h} , & k_{X^{2h+1}} = h+1 \\ \mathbb{P}^2 * X_H^{2h-2} , & k_{X^{2h+1}} = h+2 \\ \mathbb{P}^4 * X_H^{2h-4} , & k_{X^{2h+1}} = h+3 \\ \dots \\ \mathbb{P}^{2h-2} * X_H^2 , & k_{X^{2h+1}} = h+h , \end{cases}$$

where $\mathbb{P}^l*X_H^m\subset\mathbb{P}^{m+l+2}$ is a cone over a nonsingular Hermitian \mathbb{F}_q -hypersurface $X_H^m\subset\mathbb{P}^{m+1}$ of dimension m with vertex an \mathbb{F}_q -linear subspace \mathbb{P}^l ;

(3) d=2, $k_{X^n}=\frac{n+h+1}{2}\in\mathbb{Z}_{>0}$ and X^n is projectively equivalent to a cone $\mathbb{P}^h*Q^{n-h-1}\subset\mathbb{P}^{n+1}$ with vertex an \mathbb{F}_q -linear subspace \mathbb{P}^h with $-1\leq h\leq n-1$, where $Q^{n-h-1}\subset\mathbb{P}^{n-h}$ is the hyperbolic quadric hypersurface

$$X_0X_1 + X_2X_3 + \cdots + X_{n-h-1}X_{n-h} = 0$$
.

As to the case $k_{X^n}=0$, let us recall here that Homma obtained in [4] an upper bound for hypersurfaces $X^n\subset \mathbb{P}^{n+1}$ with $n \ge 1$ without \mathbb{F}_q -lines which is valid in general, except for the case n = 1 and d = q = 4. On the other hand, his bound is better than (1) with $k_{X^n} = 0$. For these reasons, we provide here another elementary upper bound for the number of \mathbb{F}_q -points of hypersurfaces X^n in \mathbb{P}^{n+1} with $k_{X^n}=0$ for any $n\geq 1$ and we characterize those X^n which achieve this bound in the following result.

Theorem 2 (Case $k_{X^n}=0$). Let $X^n \subset \mathbb{P}^{n+1}$ be a hypersurface of degree $d \geq 2$ and dimension $n \geq 1$ defined over \mathbb{F}_a . If $k_{X^n}=0$, then

$$N_a(X^n) \le (d-1)q^n + (d-2)N_a(\mathbb{P}^{n-1}) + 1$$

and equality holds if and only if d=2 and, up to projective equivalence, either n=1 and $X^1: X_0^2+X_1^2+X_2^2=0$ is a nonsingular plane conic, or n=2 and $X^2: f(X_0,X_1)+X_2X_3=0$ is a nonsingular elliptic surface, where $f(X_0,X_1)=\alpha X_0^2+X_0X_1+X_1^2$ is an irreducible binary quadratic form with $\alpha\in\{t\in\mathbb{F}_q\mid t+t^2+t^4+\cdots+t^{2^{r-1}}=1\}$ if $q=2^r$ for some $r\in\mathbb{Z}_{\geq 1}$ and such that $1-4\alpha$ is a non-square if q is odd.

Finally, in Corollary 9 of Section 3 we give an immediate consequence of Theorems 1 and 2 for the nonsingular case.

Download English Version:

https://daneshyari.com/en/article/8902836

Download Persian Version:

https://daneshyari.com/article/8902836

<u>Daneshyari.com</u>