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1. Introduction

Let I, be a finite field with g elements, where q = p" for some prime p and some positive integer r, P! be the projective
space over I, of dimension n + 1, and X" be a hypersurface in P"*! defined over F, of degree d > 2 and dimension n > 1.
There is a very rich literature on the general problem of counting or finding bounds on the number of rational points of certain
projective varieties defined over finite fields. Since so far only a few things are known about it, many authors addressed their
attention to the problem of finding good upper bounds for the number of F4-points of projective varieties and hypersurfaces
defined over a finite field F, (see, e.g., [1,2,8,9] and references therein). In particular, several years ago, Thas defined in [13]
an invariant kx» of X", that is, the maximum dimension kx» of an Fy-linear subspace of P"* 1 which is contained in X", and
obtained an upper bound for the number Ny(X") of Fy-points of X" which involved this invariant kx». Recently, Homma and
Kim established the following elementary upper bound involving kxn» (cf. [7, Theorem 3.2]),

No(X™) < (d — 1)g%" Ng(B" ") + Ny(P*x") | (1)

which is sharp for kx» > 0. Moreover, they proved that (1) is better than Thas’ upper bound (see, [7, §7.1]). Finally, in [7]
the authors gave the complete list of nonsingular hypersurfaces X" in P™! with n even which reach the equality in (1) for
kxn = 5 (see [7, Theorem 4.1]).

The main purpose of this article is to re-prove in an easy way the Homma-Kim’s elementary upper bound (1) for ky» > 0,
extending this also to the case kxn = 0, and to give a complete list of hypersurfaces X" in P! which reach this bound,
independently of the parity of n and the singularities of X". In particular, observe that kx» < n and note that the right
hand of the inequality in (1) increases with kxn. Thus, the upper bound in (1) reduces to the Segre-Serre-Sgrensen’s upper
bound [10,11] and [12] for the general case kx» < n by replacing n to kxn, and it becomes the Homma-Kim'’s elementary
bound proved in [5] for the case of hypersurfaces X" which does not admit F4-linear components, that is, when ky» < n—1,
by substituting n — 1 to kxn. Furthermore, in both of the above cases, a complete list of hypersurfaces X" in P**! achieving
the upper bound in (1) with kx» = n, n — 1is givenin [11] and [14], respectively.
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Let W be an algebraic set in P"*! defined by equations over F, and denote by Sing(W )(F,) the set of singular F4-points of
W and by P* + W C P"*! the cone over W with vertex P* for some s € Z- such that s < n — dim W. Therefore, keeping in
mind the two above cases, for 0 < kyn < n we obtain the following classification result.

Theorem 1 (Cases 0 < kyn < n). Let X" C P"*! be a hypersurface of degree d > 2 and dimension n > 1 defined over IFgq. Define
kxn := max {h | there exists an Fg-linear space P" € X"}

and suppose that 0 < kxn < n. Then
Ng(X") < (d — 1)g"" Ng(B"™") + Ny(P")

and equality holds if and only if one of the following possibilities occurs:

(I) kxn = nand X™ is a union of d hyperplanes over ¥, that contain a common IF-linear subspace of codimension 2 in P"*1;
(I 0 < kyxn < n — 1 and one of the following cases can occur:

(1) d = q+ 1and X" is a space-filling hypersurface
Xos s Xnp 1) ATXS, .. X ) =0,

n+1
where A = (aij)ijzl ) isan (n+ 2) x (n + 2) matrix such that A = —Aand ai, = 0 foreveryk =1,...,n+2;
moreover, X" is nonsingular if and only if detA # 0; in particular, if n is odd, then X" is singular ;
(2) d=.,/q+ 1and

(@) n=2hwithh € Z>1, 1 < ky2n < 2h — 1 and one of the following two cases holds:

(i) if Sing(X 2")(]Fq) = {J, then kyan = hand X?" is projectively equivalent to a nonsingular Hermitian hypersurface;
(ii) if Sing(XZ“)(IFq) = (), then h > 2 and, up to projective equivalence, we have

P! Xﬁh_z , kyn =h+1
w2h — JPP XAt ken=h+2
PP 3w X2, ken=h4(h—1);

(b) n=2h+ 1withh € Z>1, 1 < ky2n+1 < 2h and, up to projective equivalence, we have

PO s X2 kyoni1 = h+ 1

" P2 *Xg,h_z , kyon1 =h+2
+1 _

X =1r >I<Xl_21h_4 , kyni1 =h+3

p2h-2 *X,_Z, , kyone1 =h+h,

where P! x X C P2 is a cone over a nonsingular Hermitian Fq-hypersurface X[} C P™*1 of dimension m with
vertex an Fy-linear subspace P! ;
3) d =2 ke = B ¢ 70 and X" is projectively equivalent to a cone P" « Q"~"~1  P"*! with vertex an F,-linear
2 q

subspace P" with —1 < h < n — 1, where Q"~"~1  P"~" is the hyperbolic quadric hypersurface
XoX1 +XoX3 + -+ + Xph—1Xn—h = 0.

As to the case kyn = 0, let us recall here that Homma obtained in [4] an upper bound for hypersurfaces X* C P"*! with
n > 1 without Fy-lines which is valid in general, except for the case n = 1and d = q = 4. On the other hand, his bound
is better than (1) with kx» = 0. For these reasons, we provide here another elementary upper bound for the number of
[F4-points of hypersurfaces X" in P"*! with kyn = 0 for any n > 1 and we characterize those X" which achieve this bound in
the following result.

Theorem 2 (Case kxn = 0). Let X" C P"*1 be a hypersurface of degree d > 2 and dimension n > 1 defined over F. If kxn = 0,
then

Ng(X™) < (d — 1)q" + (d — 2)Ng(P" 1) + 1

and equality holds if and only if d = 2 and, up to projective equivalence, either n = 1 and X! : Xg —|—X12 +X22 = 0is anonsingular
plane conic, or n = 2 and X? : f(Xo, X1) + XoX3 = 0 is a nonsingular elliptic surface, where f(Xy, X1) = axg + XoX1 + X12 is an

irreducible binary quadratic form witha € {t € Fy |t + 2 +t4 + .-+ t2' = 1}if g = 2" for some r € Z- and such that
1 — 4« is a non-square if q is odd.

Finally, in Corollary 9 of Section 3 we give an immediate consequence of Theorems 1 and 2 for the nonsingular case.
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