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a b s t r a c t

Let Xn be a hypersurface in Pn+1 with n ≥ 1 defined over a finite field Fq of q elements. In
this note, we classify, up to projective equivalence, hypersurfaces Xn as above which reach
two elementary upper bounds for the number of Fq-points on Xn which involve a Thas’
invariant.
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1. Introduction

Let Fq be a finite field with q elements, where q = pr for some prime p and some positive integer r , Pn+1 be the projective
space over Fq of dimension n + 1, and Xn be a hypersurface in Pn+1 defined over Fq of degree d ≥ 2 and dimension n ≥ 1.
There is a very rich literature on the general problemof counting or finding bounds on the number of rational points of certain
projective varieties defined over finite fields. Since so far only a few things are known about it, many authors addressed their
attention to the problem of finding good upper bounds for the number of Fq-points of projective varieties and hypersurfaces
defined over a finite field Fq (see, e.g., [1,2,8,9] and references therein). In particular, several years ago, Thas defined in [13]
an invariant kXn of Xn, that is, the maximum dimension kXn of an Fq-linear subspace of Pn+1 which is contained in Xn, and
obtained an upper bound for the number Nq(Xn) of Fq-points of Xn which involved this invariant kXn . Recently, Homma and
Kim established the following elementary upper bound involving kXn (cf. [7, Theorem 3.2]),

Nq(Xn) ≤ (d − 1)qkXnNq(Pn−kXn ) + Nq(PkXn ) , (1)

which is sharp for kXn > 0. Moreover, they proved that (1) is better than Thas’ upper bound (see, [7, §7.1]). Finally, in [7]
the authors gave the complete list of nonsingular hypersurfaces Xn in Pn+1 with n even which reach the equality in (1) for
kXn =

n
2 (see [7, Theorem 4.1]).

Themain purpose of this article is to re-prove in an easy way the Homma–Kim’s elementary upper bound (1) for kXn > 0,
extending this also to the case kXn = 0, and to give a complete list of hypersurfaces Xn in Pn+1 which reach this bound,
independently of the parity of n and the singularities of Xn. In particular, observe that kXn ≤ n and note that the right
hand of the inequality in (1) increases with kXn . Thus, the upper bound in (1) reduces to the Segre–Serre–Sørensen’s upper
bound [10,11] and [12] for the general case kXn ≤ n by replacing n to kXn , and it becomes the Homma–Kim’s elementary
bound proved in [5] for the case of hypersurfaces Xn which does not admit Fq-linear components, that is, when kXn ≤ n− 1,
by substituting n − 1 to kXn . Furthermore, in both of the above cases, a complete list of hypersurfaces Xn in Pn+1 achieving
the upper bound in (1) with kXn = n, n − 1 is given in [11] and [14], respectively.
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LetW be an algebraic set in Pn+1 defined by equations over Fq and denote by Sing(W )(Fq) the set of singular Fq-points of
W and by Ps

∗ W ⊂ Pn+1 the cone over W with vertex Ps for some s ∈ Z≥0 such that s ≤ n − dimW . Therefore, keeping in
mind the two above cases, for 0 < kXn ≤ nwe obtain the following classification result.

Theorem 1 (Cases 0 < kXn ≤ n). Let Xn
⊂ Pn+1 be a hypersurface of degree d ≥ 2 and dimension n ≥ 1 defined over Fq. Define

kXn := max
{
h | there exists an Fq-linear space Ph

⊆ Xn}
and suppose that 0 < kXn ≤ n. Then

Nq(Xn) ≤ (d − 1)qkXnNq(Pn−kXn ) + Nq(PkXn )

and equality holds if and only if one of the following possibilities occurs:

(I) kXn = n and Xn is a union of d hyperplanes over Fq that contain a common Fq-linear subspace of codimension 2 in Pn+1;
(II) 0 < kXn ≤ n − 1 and one of the following cases can occur:

(1) d = q + 1 and Xn is a space-filling hypersurface

(X0, . . . , Xn+1) A t(Xq
0 , . . . , X

q
n+1) = 0,

where A =
(
aij

)
i,j=1,...,n+2 is an (n + 2) × (n + 2) matrix such that tA = −A and akk = 0 for every k = 1, . . . , n + 2;

moreover, Xn is nonsingular if and only if det A ̸= 0; in particular, if n is odd, then Xn is singular ;
(2) d =

√
q + 1 and

(a) n = 2h with h ∈ Z≥1, 1 ≤ kX2h ≤ 2h − 1 and one of the following two cases holds:

(i) if Sing(X2h)(Fq) = ∅, then kX2h = h and X2h is projectively equivalent to a nonsingular Hermitian hypersurface;
(ii) if Sing(X2h)(Fq) ̸= ∅, then h ≥ 2 and, up to projective equivalence, we have

X2h
=

⎧⎪⎪⎨⎪⎪⎩
P1

∗ X2h−2
H , kX2h = h + 1

P3
∗ X2h−4

H , kX2h = h + 2
. . .

P2h−3
∗ X2

H , kX2h = h + (h − 1) ;

(b) n = 2h + 1 with h ∈ Z≥1, 1 ≤ kX2h+1 ≤ 2h and, up to projective equivalence, we have

X2h+1
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P0
∗ X2h

H , kX2h+1 = h + 1

P2
∗ X2h−2

H , kX2h+1 = h + 2

P4
∗ X2h−4

H , kX2h+1 = h + 3
. . .

P2h−2
∗ X2

H , kX2h+1 = h + h ,

where Pl
∗ Xm

H ⊂ Pm+l+2 is a cone over a nonsingular Hermitian Fq-hypersurface Xm
H ⊂ Pm+1 of dimension m with

vertex an Fq-linear subspace Pl ;
(3) d = 2, kXn =

n+h+1
2 ∈ Z>0 and Xn is projectively equivalent to a cone Ph

∗ Q n−h−1
⊂ Pn+1 with vertex an Fq-linear

subspace Ph with −1 ≤ h ≤ n − 1, where Q n−h−1
⊂ Pn−h is the hyperbolic quadric hypersurface

X0X1 + X2X3 + · · · + Xn−h−1Xn−h = 0 .

As to the case kXn = 0, let us recall here that Homma obtained in [4] an upper bound for hypersurfaces Xn
⊂ Pn+1 with

n ≥ 1 without Fq-lines which is valid in general, except for the case n = 1 and d = q = 4. On the other hand, his bound
is better than (1) with kXn = 0. For these reasons, we provide here another elementary upper bound for the number of
Fq-points of hypersurfaces Xn in Pn+1 with kXn = 0 for any n ≥ 1 and we characterize those Xn which achieve this bound in
the following result.

Theorem 2 (Case kXn = 0). Let Xn
⊂ Pn+1 be a hypersurface of degree d ≥ 2 and dimension n ≥ 1 defined over Fq. If kXn = 0,

then

Nq(Xn) ≤ (d − 1)qn + (d − 2)Nq(Pn−1) + 1

and equality holds if and only if d = 2 and, up to projective equivalence, either n = 1 and X1
: X2

0 +X2
1 +X2

2 = 0 is a nonsingular
plane conic, or n = 2 and X2

: f (X0, X1) + X2X3 = 0 is a nonsingular elliptic surface, where f (X0, X1) = αX2
0 + X0X1 + X2

1 is an
irreducible binary quadratic form with α ∈ {t ∈ Fq | t + t2 + t4 + · · · + t2

r−1
= 1} if q = 2r for some r ∈ Z≥1 and such that

1 − 4α is a non-square if q is odd.

Finally, in Corollary 9 of Section 3 we give an immediate consequence of Theorems 1 and 2 for the nonsingular case.
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