Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Nonexistence of some linear codes over the field of order four Hitoshi Kanda, Tatsuya Maruta *

Department of Mathematical Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

ARTICLE INFO

Article history: Received 15 November 2017 Received in revised form 12 April 2018 Accepted 14 June 2018 Available online 14 July 2018

Keywords: Optimal linear code Griesmer bound Geometric method

ABSTRACT

We consider the problem of determining $n_4(5, d)$, the smallest possible length n for which an $[n, 5, d]_4$ code of minimum distance d over the field of order 4 exists. We prove the nonexistence of $[g_4(5, d) + 1, 5, d]_4$ codes for d = 31, 47, 48, 59, 60, 61, 62 and the nonexistence of a $[g_4(5, d), 5, d]_4$ code for d = 138 using the geometric method through projective geometries, where $g_q(k, d) = \sum_{i=0}^{k-1} \left\lceil d/q^i \right\rceil$. This yields to determine the exact values of $n_4(5, d)$ for these values of d. We also give the updated table for $n_4(5, d)$ for all dexcept some known cases.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We denote by \mathbb{F}_q^n the vector space of *n*-tuples over \mathbb{F}_q , the field of *q* elements. An $[n, k, d]_q \operatorname{code} C$ is a linear code of length *n*, dimension *k* and minimum Hamming weight *d* over \mathbb{F}_q . The weight of a vector $\mathbf{x} \in \mathbb{F}_q^n$, denoted by $wt(\mathbf{x})$, is the number of nonzero coordinate positions in \mathbf{x} . The weight distribution of *C* is the list of numbers A_i which is the number of codewords of *C* with weight *i*. We only consider *non-degenerate* codes having no coordinate which is identically zero. A fundamental problem in coding theory is to find $n_q(k, d)$, the minimum length *n* for which an $[n, k, d]_q$ code exists. This problem is sometimes called the optimal linear codes problem, see [5,6]. A well-known lower bound on $n_a(k, d)$, called the Griesmer bound, says:

$$n_q(k, d) \ge g_q(k, d) = \sum_{i=0}^{k-1} \left\lceil d/q^i \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to *x*. The values of $n_q(k, d)$ are determined for all *d* only for some small values of *q* and *k*. The optimal linear codes problem for q = 4 is solved for $k \le 4$ for all *d*, see [8,15].

Theorem 1.1. $n_4(4, d) = g_4(4, d) + 1$ for d = 3, 4, 7, 8, 13-16, 23-32, 37-44, 77-80 and $n_4(4, d) = g_4(4, d)$ for any other *d*.

As for the case k = 5, the value of $n_4(5, d)$ is unknown for 107 values of d, and the remaining cases look quite difficult because the only progress after the computer-aided research [1] was the nonexistence of Griesmer codes for d = 287, 288 [9], see also [15]. It is known that $n_4(5, d)$ is equal to $g_4(5, d) + 1$ or $g_4(5, d) + 2$ for d = 31, 47, 48, 59, 60, 61, 62 and that $n_4(5, d)$ is equal to $g_4(5, d) + 1$ for d = 138. Our purpose is to prove the following theorems to determine $n_4(5, d)$ for these values of d.

Theorem 1.2. There exists no $[g_4(5, d) + 1, 5, d]_4$ code for d = 31, 47, 48, 59, 60, 61, 62.

Theorem 1.3. *There exists no* $[g_4(5, d), 5, d]_4$ *code for* d = 138.

https://doi.org/10.1016/j.disc.2018.06.024 0012-365X/© 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: jinza80kirisame@gmail.com (H. Kanda), maruta@mi.s.osakafu-u.ac.jp (T. Maruta).

We note that our proofs would heavily depend on the extension theorems which are valid only for linear codes over \mathbb{F}_4 . So, generalizing the nonexistence results to $q \ge 5$ seems hopeless. The above theorems determine $n_4(5, d)$ for some d as follows.

Corollary 1.4. $n_4(5, d) = g_4(5, d) + 2$ for d = 31, 47, 48, 59, 60, 61, 62.

Corollary 1.5. $n_4(5, d) = g_4(5, d) + 1$ for d = 138.

For $k \ge 6$, we get the following by shortening since $g_q(k, d) = g_q(5, d) + k - 5$ for $k \ge 6$ if $d \le q^5$.

Corollary 1.6. $n_4(k, d) \ge g_4(k, d) + 2$ for d = 31, 47, 48, 59, 60, 61, 62 for $k \ge 6$.

Corollary 1.7. $n_4(k, d) \ge g_4(k, d) + 1$ for d = 138 for $k \ge 6$.

We also give the updated table for $n_4(5, d)$ as Table 2. We give the values and bounds of $g = g_4(5, d)$ and $n = n_4(5, d)$ for all d except for 249 $\leq d \leq 256$ and for $d \geq 369$ which are the cases satisfying $n_4(5, d) = g_4(5, d)$. Entries in boldface are given in this paper.

2. Preliminaries

In this section, we give the geometric method through PG(r, q), the projective geometry of dimension r over \mathbb{F}_q , and preliminary results to prove the main results. The 0-flats, 1-flats, 2-flats, 3-flats, (r - 2)-flats and (r - 1)-flats in PG(r, q) are called *points*, *lines*, *planes*, *solids*, *secundums* and *hyperplanes*, respectively.

Let C be an $[n, k, d]_q$ code having no coordinate which is identically zero. The columns of a generator matrix of C can be considered as a multiset of n points in $\Sigma = PG(k - 1, q)$, denoted by \mathcal{M}_C . An *i-point* is a point of Σ which has multiplicity i in \mathcal{M}_C . Denote by γ_0 the maximum multiplicity of a point from Σ in \mathcal{M}_C and let C_i be the set of *i*-points in Σ , $0 \le i \le \gamma_0$. For any subset S of Σ , the multiplicity of S with respect to \mathcal{M}_C , denoted by $m_C(S)$, is defined as $m_C(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|$, where |T| denotes the number of elements in a set T. A line l with $t = m_C(l)$ is called a *t*-line. A *t*-plane and so on are defined similarly. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that $n = m_C(\Sigma)$ and

$$n-d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\},\tag{2.1}$$

where \mathcal{F}_j denotes the set of *j*-flats of Σ . Conversely, such a partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ as above gives an $[n, k, d]_q$ code in the natural manner. For an *m*-flat Π in Σ , we define

$$\gamma_j(\Pi) = \max\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \ \Delta \in \mathcal{F}_j\} \text{ for } 0 \le j \le m$$

We denote simply by γ_j instead of $\gamma_j(\Sigma)$. Then $\gamma_{k-2} = n - d$, $\gamma_{k-1} = n$. For a Griesmer $[n, k, d]_q$ code, it is known (see [13]) that

$$\gamma_j = \sum_{u=0}^{j} \left\lceil \frac{d}{q^{k-1-u}} \right\rceil \text{ for } 0 \le j \le k-1.$$
(2.2)

Let θ_j be the number of points in a *j*-flat, i.e., $\theta_j = (q^{j+1} - 1)/(q - 1)$. An $[n, k, d]_q$ code, which is not necessarily Griesmer, satisfies the following:

$$\gamma_j \le \gamma_{j+1} - \frac{n - \gamma_{j+1}}{\theta_{k-2-j} - 1},\tag{2.3}$$

see [8]. We denote by λ_s the number of *s*-points in Σ . When $\gamma_0 = 2$, we have

$$\lambda_2 = \lambda_0 + n - \theta_{k-1}. \tag{2.4}$$

Denote by a_i the number of *i*-hyperplanes in Σ . The list of a_i 's is called the *spectrum* of C. We usually use τ_j 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of C. Simple counting arguments yield the following.

Lemma 2.1 ([10]). (a) $\sum_{i=0}^{n-d} a_i = \theta_{k-1}$. (b) $\sum_{i=1}^{n-d} ia_i = n\theta_{k-2}$. (c) $\sum_{i=2}^{n-d} i(i-1)a_i = n(n-1)\theta_{k-3} + q^{k-2} \sum_{s=2}^{\gamma_0} s(s-1)\lambda_s$.

When $\gamma_0 \leq 2$, the above three equalities yield the following:

$$\sum_{i=0}^{n-d-2} \binom{n-d-i}{2} a_i = \binom{n-d}{2} \theta_{k-1} - n(n-d-1)\theta_{k-2} + \binom{n}{2} \theta_{k-3} + q^{k-2}\lambda_2.$$
(2.5)

Download English Version:

https://daneshyari.com/en/article/8902844

Download Persian Version:

https://daneshyari.com/article/8902844

Daneshyari.com