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1. Introduction

We denote by Fg the vector space of n-tuples over IFy, the field of g elements. An [n, k, d], code C is a linear code of length
n, dimension k and minimum Hamming weight d over F,. The weight of a vector ¥ € Fy, denoted by wt(x), is the number of
nonzero coordinate positions in x. The weight distribution of C is the list of numbers A; which is the number of codewords of C
with weight i. We only consider non-degenerate codes having no coordinate which is identically zero. A fundamental problem
in coding theory is to find ng(k, d), the minimum length n for which an [n, k, d], code exists. This problem is sometimes called
the optimal linear codes problem, see [5,6]. A well-known lower bound on ngy(k, d), called the Griesmer bound, says:

k—1
ng(k, d) > go(k. d) = > [d/q'],
i=0
where [x] denotes the smallest integer greater than or equal to x. The values of ny(k, d) are determined for all d only for
some small values of q and k. The optimal linear codes problem for g = 4 is solved for k < 4 for all d, see [8,15].

Theorem 1.1. n4(4, d) = g4(4,d)+ 1ford = 3,4,7, 8, 13-16, 23-32, 37-44, 77-80 and n4(4, d) = g4(4, d) for any other d.

As for the case k = 5, the value of ny(5, d) is unknown for 107 values of d, and the remaining cases look quite
difficult because the only progress after the computer-aided research [1] was the nonexistence of Griesmer codes for
d = 287, 288 (9], see also [15].Itis known that ny(5, d) is equal to g4(5, d)+ 1 or g4(5, d)+2 ford = 31, 47, 48, 59, 60, 61, 62
and that ny(5, d) is equal to g4(5, d) or g4(5, d)+ 1 for d = 138. Our purpose is to prove the following theorems to determine
n4(5, d) for these values of d.

Theorem 1.2. There exists no [g4(5,d) + 1, 5, d]4 code for d = 31, 47, 48, 59, 60, 61, 62.

Theorem 1.3. There exists no [g4(5, d), 5, d]4 code for d = 138.
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We note that our proofs would heavily depend on the extension theorems which are valid only for linear codes over Fy.
So, generalizing the nonexistence results to g > 5 seems hopeless. The above theorems determine ny(5, d) for some d as
follows.

Corollary 1.4. ny(5, d) = g4(5,d) + 2 for d = 31, 47, 48, 59, 60, 61, 62.

Corollary 1.5. ny(5, d) = g4(5,d) + 1 for d = 138.
For k > 6, we get the following by shortening since gy(k, d) = g,(5,d) + k — 5 fork > 6 ifd < ¢°.

Corollary 1.6. ny(k, d) > g4(k,d) + 2 for d = 31, 47, 48, 59, 60, 61, 62 for k > 6.

Corollary 1.7. ny(k, d) > g4(k,d) + 1 for d = 138 for k > 6.

We also give the updated table for ny(5, d) as Table 2. We give the values and bounds of g = g4(5, d) and n = n4(5, d) for
all d except for 249 < d < 256 and for d > 369 which are the cases satisfying n4(5, d) = g4(5, d). Entries in boldface are
given in this paper.

2. Preliminaries

In this section, we give the geometric method through PG(r, q), the projective geometry of dimension r over Fy, and
preliminary results to prove the main results. The 0-flats, 1-flats, 2-flats, 3-flats, (r — 2)-flats and (r — 1)-flats in PG(r, q) are
called points, lines, planes, solids, secundums and hyperplanes, respectively.

Let C be an [n, k, d]; code having no coordinate which is identically zero. The columns of a generator matrix of C can be
considered as a multiset of n points in X' = PG(k — 1, q), denoted by M. An i-point is a point of X’ which has multiplicity i
in M. Denote by y, the maximum multiplicity of a point from X in M and let ; be the set of i-pointsin X, 0 < i < yy. For
any subset S of X, the multiplicity of S with respect to M, denoted by m¢(S), is defined as m¢(S) = Zﬁli -|SN G|, where |T|
denotes the number of elements in a set T. A line [ with t = m¢(l) is called a t-line. A t-plane and so on are defined similarly.
Then we obtain the partition X = UQOG such that n = m¢(X') and

n—d=max{me(7) | 7 € Fy_2}, (2.1)

where F; denotes the set of j-flats of X. Conversely, such a partition ¥ = UQOC,- as above gives an [n, k, d], code in the
natural manner. For an m-flat IT in X, we define

yi(IT) = max{m¢(A) | A C I, Ae Fjfor0<j<m.

We denote simply by y; instead of y;(X'). Then y,_, = n —d, yx—1 = n. For a Griesmer [n, k, d], code, it is known (see [13])
that
' d

u=0

Let 6; be the number of points in a j-flat, i.e., §; = (¢*' —1)/(q — 1). An [n, k, d]q code, which is not necessarily Griesmer,
satisfies the following:

n— Yj+1
Vi < Vi+1 — 7J+, (2.3)
Ok—2-j— 1
see [8]. We denote by A; the number of s-points in X'. When y, = 2, we have
)\2 = }\.0 +n-— Gk—l- (24)

Denote by a; the number of i-hyperplanes in X. The list of a;’s is called the spectrum of C. We usually use t;’s for the spectrum
of a hyperplane of X to distinguish from the spectrum of C. Simple counting arguments yield the following.

Lemma 2.1 ([10]). (a) Y "dai = 6,1, (b) Y- Viay = nf_,.
(©) Xiili — Dag = n(n — 13 + ¢ 23 2,8(s — Dhs.
When yy < 2, the above three equalities yield the following:

n—d—2 .
n—d-—i n—d
E_O ( ) )ai = < ) )91#1 —n(n—d— 1)

1

n
+ (2) k-3 + ¢ %2z (2.5)
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