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a b s t r a c t

We consider the problem of determining n4(5, d), the smallest possible length n for which
an [n, 5, d]4 code of minimum distance d over the field of order 4 exists. We prove the
nonexistence of [g4(5, d) + 1, 5, d]4 codes for d = 31, 47, 48, 59, 60, 61, 62 and the
nonexistence of a [g4(5, d), 5, d]4 code for d = 138 using the geometric method through
projective geometries, where gq(k, d) =

∑k−1
i=0

⌈
d/qi

⌉
. This yields to determine the exact

values of n4(5, d) for these values of d. We also give the updated table for n4(5, d) for all d
except some known cases.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

We denote by Fn
q the vector space of n-tuples over Fq, the field of q elements. An [n, k, d]q code C is a linear code of length

n, dimension k and minimum Hamming weight d over Fq. The weight of a vector x ∈ Fn
q , denoted by wt(x), is the number of

nonzero coordinate positions in x. Theweight distribution of C is the list of numbers Ai which is the number of codewords of C
withweight i.We only consider non-degenerate codes having no coordinatewhich is identically zero. A fundamental problem
in coding theory is to find nq(k, d), theminimum length n forwhich an [n, k, d]q code exists. This problem is sometimes called
the optimal linear codes problem, see [5,6]. A well-known lower bound on nq(k, d), called the Griesmer bound, says:

nq(k, d) ≥ gq(k, d) =

k−1∑
i=0

⌈
d/qi

⌉
,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. The values of nq(k, d) are determined for all d only for
some small values of q and k. The optimal linear codes problem for q = 4 is solved for k ≤ 4 for all d, see [8,15].

Theorem 1.1. n4(4, d) = g4(4, d) + 1 for d = 3, 4, 7, 8, 13–16, 23–32, 37–44, 77–80 and n4(4, d) = g4(4, d) for any other d.

As for the case k = 5, the value of n4(5, d) is unknown for 107 values of d, and the remaining cases look quite
difficult because the only progress after the computer-aided research [1] was the nonexistence of Griesmer codes for
d = 287, 288 [9], see also [15]. It is known that n4(5, d) is equal to g4(5, d)+1 or g4(5, d)+2 for d = 31, 47, 48, 59, 60, 61, 62
and that n4(5, d) is equal to g4(5, d) or g4(5, d)+1 for d = 138. Our purpose is to prove the following theorems to determine
n4(5, d) for these values of d.

Theorem 1.2. There exists no [g4(5, d) + 1, 5, d]4 code for d = 31, 47, 48, 59, 60, 61, 62.

Theorem 1.3. There exists no [g4(5, d), 5, d]4 code for d = 138.
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We note that our proofs would heavily depend on the extension theorems which are valid only for linear codes over F4.
So, generalizing the nonexistence results to q ≥ 5 seems hopeless. The above theorems determine n4(5, d) for some d as
follows.

Corollary 1.4. n4(5, d) = g4(5, d) + 2 for d = 31, 47, 48, 59, 60, 61, 62.

Corollary 1.5. n4(5, d) = g4(5, d) + 1 for d = 138.

For k ≥ 6, we get the following by shortening since gq(k, d) = gq(5, d) + k − 5 for k ≥ 6 if d ≤ q5.

Corollary 1.6. n4(k, d) ≥ g4(k, d) + 2 for d = 31, 47, 48, 59, 60, 61, 62 for k ≥ 6.

Corollary 1.7. n4(k, d) ≥ g4(k, d) + 1 for d = 138 for k ≥ 6.

We also give the updated table for n4(5, d) as Table 2. We give the values and bounds of g = g4(5, d) and n = n4(5, d) for
all d except for 249 ≤ d ≤ 256 and for d ≥ 369 which are the cases satisfying n4(5, d) = g4(5, d). Entries in boldface are
given in this paper.

2. Preliminaries

In this section, we give the geometric method through PG(r, q), the projective geometry of dimension r over Fq, and
preliminary results to prove the main results. The 0-flats, 1-flats, 2-flats, 3-flats, (r − 2)-flats and (r − 1)-flats in PG(r, q) are
called points, lines, planes, solids, secundums and hyperplanes, respectively.

Let C be an [n, k, d]q code having no coordinate which is identically zero. The columns of a generator matrix of C can be
considered as a multiset of n points in Σ = PG(k − 1, q), denoted by MC . An i-point is a point of Σ which has multiplicity i
inMC . Denote by γ0 the maximummultiplicity of a point fromΣ inMC and let Ci be the set of i-points inΣ , 0 ≤ i ≤ γ0. For
any subset S of Σ , the multiplicity of S with respect toMC , denoted bymC(S), is defined asmC(S) =

∑γ0
i=1i · |S ∩Ci|, where |T |

denotes the number of elements in a set T . A line lwith t = mC(l) is called a t-line. A t-plane and so on are defined similarly.
Then we obtain the partition Σ =

⋃γ0
i=0Ci such that n = mC(Σ) and

n − d = max{mC(π ) | π ∈ Fk−2}, (2.1)

where Fj denotes the set of j-flats of Σ . Conversely, such a partition Σ =
⋃γ0

i=0Ci as above gives an [n, k, d]q code in the
natural manner. For anm-flat Π in Σ , we define

γj(Π ) = max{mC(∆) | ∆ ⊂ Π, ∆ ∈ Fj} for 0 ≤ j ≤ m.

We denote simply by γj instead of γj(Σ). Then γk−2 = n − d, γk−1 = n. For a Griesmer [n, k, d]q code, it is known (see [13])
that

γj =

j∑
u=0

⌈
d

qk−1−u

⌉
for 0 ≤ j ≤ k − 1. (2.2)

Let θj be the number of points in a j-flat, i.e., θj = (qj+1
− 1)/(q − 1). An [n, k, d]q code, which is not necessarily Griesmer,

satisfies the following:

γj ≤ γj+1 −
n − γj+1

θk−2−j − 1
, (2.3)

see [8]. We denote by λs the number of s-points in Σ . When γ0 = 2, we have

λ2 = λ0 + n − θk−1. (2.4)

Denote by ai the number of i-hyperplanes inΣ . The list of ai’s is called the spectrum of C. We usually use τj’s for the spectrum
of a hyperplane of Σ to distinguish from the spectrum of C. Simple counting arguments yield the following.

Lemma 2.1 ([10]). (a)
∑n−d

i=0 ai = θk−1. (b)
∑n−d

i=1 iai = nθk−2.

(c)
∑n−d

i=2 i(i − 1)ai = n(n − 1)θk−3 + qk−2∑γ0
s=2s(s − 1)λs.

When γ0 ≤ 2, the above three equalities yield the following:
n−d−2∑
i=0

(
n − d − i

2

)
ai =

(
n − d
2

)
θk−1 − n(n − d − 1)θk−2

+

(n
2

)
θk−3 + qk−2λ2. (2.5)
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