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a b s t r a c t

We investigate the relation between Hall’s theorem and Kőnig’s theorem in graphs and
hypergraphs. In particular, we characterize the graphs satisfying a deficiency version of
Hall’s theorem, thereby showing that this class strictly contains all Kőnig–Egerváry graphs.
Furthermore, we give a generalization of Hall’s theorem to normal hypergraphs.
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1. Introduction

Hall’s theorem gives a necessary and sufficient condition for the existence of a system of distinct representatives of a
family of finite sets. It is equivalent to the following result on matchings in bipartite graphs.

Theorem 1.1 ([6]). A bipartite graph has a perfect matching if and only if for all stable sets S the set N(S) of its neighbors is as
least as big as S.

The optimization version of Hall’s theorem is Kőnig’s theorem.

Theorem 1.2. In a bipartite graph the maximum size of a matching is equal to the minimum size of a vertex cover.

The two theorems are equivalent in the sense that one can be proven using the other. In this article we look at both
theorems from a different perspective. Namely, we characterize the graphs which satisfy them. In the case of Kőnig’s
theorem, graphs in which the maximum size of a matching equals the minimum size of a vertex cover are called Kőnig–
Egerváry graphs and were characterized by Deming [4] and Sterboul [14]. However, graphs satisfying Hall’s theorem have
not received much attention. Therefore, we investigate these graphs. Furthermore, we look at variants of Kőnig’s and Hall’s
theorem for hypergraphs.

2. Relations between graph properties

In this section we look at the relationship between Kőnig’s theorem, Hall’s theorem, and the deficiency version of Hall’s
theorem in several graph classes including bipartite and Kőnig–Egerváry graphs.

First of all we need some notation. We denote by ν(G) the maximum size of a matching in a graph G, and by ν∗(G) the
maximum size of a fractional matching. Graphs for which both values are equal are called stable graphs. This name comes
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from the fact that stable graphs are exactly those graphs for which the set of vertices that are not covered by somemaximum
matching form a stable set. In particular, we can test whether a graph is stable in polynomial time.

We use the following two notions which can for example be found in [11] and [8]

Definition 2.1 (Deficiency, Critical Difference of a Graph). The deficiency def(G) of a graph G is the number of vertices not
covered by a maximummatching, i.e., def(G) = |V | − 2ν(G). The critical difference is defined to be d(G) := max{|S| − |N(S)| :

S is a stable set}.

The deficiency of a graph is as least as large as its critical difference. Namely, if S is a stable set, then every matching has
to match a vertex from S to one of N(S). If |S| ≥ |N(S)|, then every matching leaves at least |S| − |N(S)| vertices uncovered.
This implies that the critical difference gives a lower bound on the deficiency.

It is possible that the critical difference is smaller than the deficiency of a graph. For example, the deficiency of K3 is
one where as its critical difference is zero. In particular, every stable set S of K3 has at least |S| neighbors. Thus, we cannot
establish the non-existence of a perfect matching using the condition of Hall’s theorem.

In the remainder of this sectionwe characterize the class of graphs forwhichHall’s theoremholds, i.e., we look at the class
containing all graphs G such that G has a perfect matching is equivalent to |N(S)| ≥ |S| for all stable sets S of G. Furthermore,
we characterize those graphs with def(G) = d(G). Therefore, we introduce the following two notions.

Definition 2.2 ((Strong) Hall Property). A graph G has the Hall property if it has a perfect matching or a stable set S with less
than |S| neighbors, and it has the strong Hall property if def(G) = d(G).

Hall’s theorem states that every bipartite graph has the Hall property. By definition, every graph with the strong Hall
property has the Hall property, too.

For graphs the deficiency version of Hall’s theorem (def(G) = d(G)) seems to be an easy reformulation of Kőnig’s theorem.
So one might expect that the graphs with the strong Hall property are just the Kőnig–Egerváry graphs. Indeed, every Kőnig–
Egerváry graph has the strong Hall property, see [8]. However, there are other graphs with the strong Hall property. Namely,
we show that it is enough that the maximum size of a matching equals the maximum size of a fractional matching.

Theorem 2.1. A graph has the strong Hall property if and only if it is stable.

Proof. Let G be any graph. We show that def(G) = d(G) is equivalent to ν(G) = ν∗(G) using integer programming methods
and the well-known fact that the vertices of the fractional vertex cover polyhedron are half-integral.

We claim that the critical difference d(G) of G equals the optimal value of the following integer program

max
∑

v∈V (G)

(bv − rv) (1)

s.t.
∑
v∈e

(rv − bv) ≥ 0 ∀e ∈ E(G) (2)

bv, rv ∈ {0, 1} ∀v ∈ V (G). (3)

Indeed, if S is a stable set, then

bv :=

{
1, v ∈ S
0, v ̸∈ S, rv :=

{
1, v ∈ N(S)
0, v ̸∈ N(S)

satisfies the inequalities of type (2)) and its objective value is |S| − |N(S)|. Thus, the optimal value of (1)–(3) is at least d(G).
On the other hand, let b∗, r∗ be an optimal solution to (1)–(3). If there exists a vertex v with b∗

v = r∗
v = 1, then decreasing

both variables to zero does not affect the feasibility of r∗, b∗ and it does not change the objective value. Thus, for every vertex
v we can assume that at most one of r∗

v , b∗
v is non-zero. We set S := {v|b∗

v = 1} and T := {v|r∗
v = 1}. Let {v, w} be an edge

with v ∈ S. Inequality (2) and the modification of r∗, b∗ imply that r∗
w = 1, i.e., w ∈ T . Thus, S is a stable set and T ⊇ N(S).

The objective value of r∗, b∗ is equal to |S| − |T | ≤ |S| − |N(S)| ≤ d(G). In total, we have shown that the critical difference
can be calculated via the IP (1)–(3).

Setting wv :=
rv−bv+1

2 transforms (1)–(3) into the half-integer program

max

⎛⎝|V (G)| − 2 ·

∑
v∈V (G)

wv

⎞⎠ (4)

s.t.
∑
v∈e

wv ≥ 1 ∀e ∈ E(G) (5)

wv ∈ {0,
1
2
, 1} ∀v ∈ V (G). (6)



Download English Version:

https://daneshyari.com/en/article/8902856

Download Persian Version:

https://daneshyari.com/article/8902856

Daneshyari.com

https://daneshyari.com/en/article/8902856
https://daneshyari.com/article/8902856
https://daneshyari.com

