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a b s t r a c t

Let x be an m-sequence, a maximal length sequence produced by a linear feedback shift
register.We show that xhasmaximal subword complexity function in the sense of Allouche
and Shallit. We show that this implies that the nondeterministic automatic complexity
AN (x) is close to maximal: n/2 − AN (x) = O(log2n), where n is the length of x. In contrast,
Hyde has shown AN (y) ≤ n/2 + 1 for all sequences y of length n.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Linear feedback shift registers, investigated and popularized by Golomb [2], may be ‘‘the most-used mathematical
algorithm idea in history’’, used at least 1027 times in cell phones and other devices [8]. They are particularly known as a
simple way of producing pseudorandom output sequences calledm-sequences. However, thanks to the Berlekamp–Massey
algorithm [5], one can easily find the shortest LFSR that can produce a given sequence x. The length of this LFSR, the linear
complexity of x, should then be large for a truly pseudorandom sequence, but is small form-sequences. In this articlewe show
that using a different complexity measure, automatic complexity, the pseudorandomness of m-sequences can be measured
and, indeed, verified.

Roughly speaking, finite automata are not able to detect significant patterns in shift register sequences. Moreover, shift
register sequences seem to give an answer to the question

‘‘What kind of sequences have high automatic complexity?’’

See in particular some results of computer experimentation in Section 4.

2. Definitions

While our computer results in Section 4 concern the linear case specifically, our theoretical results in Section 3 concern
the following natural abstraction of the usual notion of feedback shift register [1].

Definition 1. Let q be a positive integer and let [q] = {0, . . . , q − 1}. A q-ary k-stage combinatorial shift register (CSR) is a
mapping

Λ : [q]k → [q]k
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such that there exists F : [q]k → [q] such that for all xi,

Λ(x0, . . . , xk−1) = (x1, x2, . . . , xk−1, F (x0, x1, . . . , xk−1)).

The function F is called the feedback function of Λ.

Definition 2. An infinite sequence x = x0x1 . . . is eventually periodic if there exist integers M and N > 0 such that for all
n > M , xn = xn−N . The least N for which there exists such anM is the period of x.

Definition 3. For any k-stage CSR Λ and any word x of length ≥ k, the period of Λ upon processing x is the period of the
sequence Λt (x0, . . . , xk−1), 0 ≤ t < ∞.

Lemma 4 is well-known and easy but we believe including its proof may help the reader.

Lemma 4. Let k and q be positive integers. Let Λ be a q-ary k-stage CSR. Let x = x0x1 . . . be an infinite sequence produced by Λ.
Then x is eventually periodic, and the period of Λ upon processing x exists and is finite.

Proof. The infinite sequence Λt (x0, . . . , xk−1) for 0 ≤ t < ∞ takes values in the finite set [q]k. Thus, by the pigeonhole
principle, there existM and N > 0 with

ΛM (x0, . . . , xk−1) = ΛM−N (x0, . . . , xk−1).

Let n > M . Then

(xn, . . . , xn+k−1) = Λn(x0, . . . , xk−1)
= Λn−MΛM (x0, . . . , xk−1)
= Λn−MΛM−N (x0, . . . , xk−1)
= Λn−N (x0, . . . , xk−1)
= (xn−N , . . . , xn−N+k−1),

hence xn = xn−N . □

We can now define LFSRs andm-sequences. As our computer results concern binary sequences, we take q = 2. However,
a higher level of generality would also be possible.

Definition 5. Suppose a k-stage CSR Λ produces the infinite output x = x0x1 . . . and its feedback function is a linear
transformation of [q] when viewed as the finite field Fq, where q = 2. Then Λ is a linear feedback shift register (LFSR).
Suppose the period P ofΛ upon processing x is 2k

−1. Then x0 . . . xP−1 is called anm-sequence (or maximal length sequence,
or PN (pseudo-noise) sequence).

If m-sequences are pseudo-random in some sense then they should have high, or at least not unusually low, complexity
according to somemeasure. In 2015, Jason Castiglione (personal communication) suggested that automatic complexitymight
be that measure.

Our nondeterministic finite automatawill have no ϵ-transitions, a unique start state and a set of accepting states. Without
loss of generality for our purposes, the accepting state is unique. The language recognized by an automatonM is the set L(M)
of words accepted byM .

Definition 6 ([3,7]). Let L(M) be the language recognized by the automatonM . Let x be a sequence of finite length n.

• The (deterministic) automatic complexity of x is the least number A(x) of states of a deterministic finite automaton M
such that

L(M) ∩ {0, 1}n = {x}.

• The nondeterministic automatic complexity AN (x) is the minimum number of states of a nondeterministic finite
automaton (NFA)M accepting x such that there is only one accepting path inM of length |x|.

• The non-total deterministic automatic complexity A−(x) is defined likeA(x) butwithout requiring totality of the transition
function.

As totality can always be achieved by adding at most one extra ‘‘dead’’ state, we have

AN (x) ≤ A−(x) ≤ A(x) ≤ A−(x) + 1.

Theorem 7 (Hyde [3]). The nondeterministic automatic complexity AN (x) of a sequence x of length n satisfies

AN (x) ≤ ⌊n/2⌋ + 1.

Fig. 1 gives a hint to the proof of Theorem 7 in the case where n is odd. Theorem 7 is sharp [3], and experimentally we
find that about 50% of all binary sequences attain the bound. Thus, to ‘‘fool’’ finite automata this bound should be attained
or almost attained.
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