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a b s t r a c t

The rainbow number rb(G,H) for the graph H in G is defined to be the minimum integer
c such that any c-edge-coloring of G contains a rainbow H . As one of the most important
structures in graphs, the rainbow number of matchings has drawnmuch attention and has
been extensively studied. Jendrol et al. initiated the rainbownumber ofmatchings in planar
graphs and they obtained bounds for the rainbow number of thematching kK2 in the plane
triangulations, where the gap between the lower and upper bounds is O(k3). In this paper,
we show that the rainbow number of the matching kK2 in maximal outerplanar graphs of
order n is n+O(k). Using this technique, we show that the rainbownumber of thematching
kK2 in some subfamilies of plane triangulations of order n is 2n + O(k). The gaps between
our lower and upper bounds are only O(k).

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An edge-colored graph is called rainbow if the colors on its edges are distinct. The rainbow number rb(Kn,H) for the graph
H in Kn is defined to be the minimum integer k such that any k-edge-coloring of Kn contains a rainbow H . This parameter
is closely related to the anti-Ramsey number for a graph H in Kn, introduced by Erdős et al. [4] in 1973, which is defined to
be the maximum number of colors in an edge-coloring of Kn which does not contain any rainbow H . Clearly, the rainbow
number equals the anti-Ramsey number plus one. Interestingly, during the last decades the researchers replaced the host
graph Kn by a graph G and the corresponding rainbow number rb(G,H) for a graph H in G, if H ⊆ G, can be defined in the
similar way.

In general, the rainbow number is closely related to the Turán result. So far, the rainbow numbers for some special graph
classes have been determined, see [5]. Among them, themost intriguing classes include cycles, paths, cliques andmatchings.
The rainbow numbers of paths and cliques in Kn have beenwell studied and determined in [4,24] and [4,20,23], respectively.
Erdős et al. [4] posed a conjecture on the rainbownumber of cycles inKn, whichwas proved step by step in [1,9,21]. Axenovich
et al. [2] determined the rainbow number of cycles in complete bipartite graphs. When the host graph is not Kn or Km;n, the
problem seems to be very complicated and hard to determine. Encouragingly, Hornak et al. [7] gave bounds for the rainbow
number of cycles in plane triangulations, which was improved recently by Lan et al. [16]. For more results about the rainbow
numbers, we refer to the surveys [5,15] and [6] which is a dynamically updated version of [5].

As one of the most important structures in graphs, the rainbow number of matchings has drawn much attention and
has been extensively studied. It is not surprising that the rainbow numbers of matchings, including its extremal colorings,
in Kn and Km;n have been determined completely, see [3,12,14,17,23]. Later, the authors [10,11,18] further considered the
rainbow number of matchings in regular bipartite graphs. Interestingly, the authors [22] considered the rainbow number of
matchings in hypergraphs. Recently, Jin et al. [13] determined the problem in complete split graphs which covers the results
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in complete graphs. Jendrol et al. [8] obtained bounds for the rainbow number of matchings in the plane triangulations.
Unfortunately, the gap between the lower and upper bounds in [8] is O(k3), where k denotes the size of the matching.

In this paper, we consider the rainbow number of the matching kK2 in planar graphs. At first in Section 2, using the
analogous technique from [8], we get the lower and upper bounds for the rainbow number of matching kK2 in maximal
outerplanar graphs. Still the gap between them is somewhat large. In Section 3, we find a new method to improve the
bounds in Section 2 and we show that the rainbow number of the matching kK2 in maximal outerplanar graphs of order n
is n + O(k). Using this technique, we show that the rainbow number of the matching kK2 in the Hamiltonian subfamily of
plane triangulations of order n is 2n+O(k), which improves the bounds in [8]. Finally in Section 4, we determine the rainbow
number of matchings of small size in the outerplanar graphs.

2. Bounds in maximal outerplanar graphs

A maximal outerplanar graph is a planar graph that is not a spanning subgraph of another outerplanar graph. Clearly,
if Mn is a maximal outerplanar graph of order n ≥ 4, then |E(Mn)| = 2n − 3 and δ(Mn) ≥ 2. Denote by Mn the family
of maximal outerplanar graphs of order n. We also use the notion rb(Mn, kK2) to denote the minimum integer k such that
any k-edge-coloring of any member of Mn contains a rainbow kK2. In this section, we give lower and upper bounds on
rb(Mn, kK2) for all k ≥ 3 and n ≥ 2k.

Lemma 2.1. For all k ≥ 3 and n ≥ 2k, rb(Mn, kK2) ≥ n + 2k − 5.

Proof. Let Mn be a maximal outerplanar graph of order n with V (Mn) = {v1, v2, . . . , vn} and E(Mn) = {vivi+1|1 ≤ i ≤

n − 1}
⋃

{v1vi|3 ≤ i ≤ n}. It is clear that rb(Mn, kK2) ≥ rb(Mn, kK2). Now color all edges vivi+1 for 2k − 4 ≤ i ≤ n − 1 with
a same color and color all the remaining edges with new distinct colors. Then we get a (n + 2k − 6)-edge-coloring of Mn,
which does not contain any rainbow kK2. So the lower bound holds obviously. ■

Now we consider the upper bound of rainbow matchings in the maximal outerplanar graph. First, we present an upper
bound by using the same proof idea in [8].

Lemma 2.2. For all k ≥ 3 and n ≥ 2k,

rb(Mn, kK2) ≤ n + 2k − 4 + 2
(
2k − 2

2

)
.

Proof. Our proof is by induction on k. The cases for k = 2,3 will be verified in the next section and herewe omit the checking
details for these cases. LetMn be any maximal outplanar graph of order n. For a given (n+ 2k− 4+ 2

(
2k − 2

2

)
)-edge-coloring

of Mn, let G ⊂ Mn be a rainbow spanning subgraph with |E(G)| = n + 2k − 4 + 2
(
2k − 2

2

)
. That is to say that G contains one

and only one edge of each color. Since

n + 2k − 4 + 2
(
2k − 2

2

)
> n + 2(k − 1) − 4 + 2

(
2k − 4

2

)
,

by the induction assumption, the graph G contains a rainbow (k − 1)K2. Suppose thatMn does not contain any rainbow kK2.
Let

M = {ei = uiwi|i = 1, 2, . . . , k − 1}

be such a rainbow (k − 1)K2, and let H = G[V (M)]. Since H ⊂ Mn and Mn be a maximal outerplanar graph, we have
|E(H)| ≤ 2(2k − 2) − 3 = 4k − 7. Set R = V (Mn) \ V (H) and it is clear that |R| = n − 2k + 2.

First observe that E(G[R]) = ∅, otherwise we have a rainbow kK2 in G. Next we will estimate the number of EG(V (H), R),
where EG(V (H), R) denotes the set of edges of Gwith an end in V (H) and R, respectively. Let

d1 ≤ d2 ≤ · · · ≤ dn−2k+2

be the degree sequence of all vertices of R in G. Then
n−2k+2∑

i=1

di = |EG(V (H), R)|.

If di ≤ 1 for all 1 ≤ i ≤ n − 2k + 2, then
|E(G)| = |E(H)| + |EG(V (H), R)|

≤ (4k − 7) + (n − 2k + 2)

≤ n + 2k − 5,

a contradiction to |E(G)| = n + 2k − 4 + 2
(
2k − 2

2

)
.
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