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a b s t r a c t

Wediscuss a version of Nim inwhich players are allowed to use amove from the traditional
formofNimor to split a pile after adding somepredetermined number q of coins to the pile.
When q is odd or negative, the play proceeds as in regularNim. For q even andnon-negative,
we find three patterns: q = 0, q = 2 and q ⩾ 4.
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1. Introduction and definitions

The winning strategy for the game of Nim was determined in 1902 by Bouton [2]. Since that seminal paper, there have
been more than 100 scholarly articles on Nim and variants of Nim, and on the use of Nim and Sprague–Grundy numbers to
solve other combinatorial games. For a general introduction to combinatorial games, see [1].

A combinatorial 2-person game is a game of complete information. Two players alternate moves. Both players are aware
of the game position at any time, and there is no element of chance. The variant we consider is a normal game, meaning that
the player who makes the last move wins.

In this version of Nim, which we call Split-q-Nim, two players begin with several piles of coins and then alternate moves,
with the player who makes the last legal move declared the winner. The moves are of two types:

(i) A player can remove any non-zero number of coins from any pile; or
(ii) A player can split a pile of n coins by first adding q coins to the pile, q ∈ Z, and then splitting the pile into two piles of

heights at most n − 1.
By lexicographically ordering the possible game positions, it is obvious that no game position can be repeated. Also, from

each position, there are only a finite number of game positions that may result from a single move.
We use N = {a ∈ Z : a ⩾ 0} for the set of non-negative integers. For a set S which does not contain N, we define

mex (S) = min {a ∈ N : a ̸∈ S}. For any position P , let M (P) denote the positions that can be reached from P in a single
move and let Gr (P) denote the Grundy number of P , where Gr (P) = mex ({Gr (Q ) : Q ∈ M (P)}). As in other combinatorial
games, we can determine a winning strategy in our variant by calculating the Grundy number of each pile of coins, and
playing the usual version of Nim on the Grundy numbers. Hence, it will suffice to calculate the Grundy number of a single
pile of n coins, for all possible n.

We shall see in Section 3 that when q is odd or when q is negative, the Grundy number of a pile of height n is simply n,
and a player has a winning strategy using only rule (i), if there is any winning strategy. Games with other values of q are
more interesting.

In Section 2, we consider the case q = 2, where the Grundy number of a pile of height n depends on the number of ones
in the base two representation of n. In Section 3, in addition to the cases in which q is odd or negative, we also consider the
case q = 0, where the Grundy number depends on the last two binary digits of n, and the Grundy number of an even integer
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n can be n or n− 1. In Section 4, we consider q even, q > 0, where the pattern depends on the last few binary digits of n, and
the Grundy number of an even integer n can be n or n + 1.

Let [n1, n2, . . . , nk] represent the positionwith the jth pile having nj coins, nj ⩾ 0.Wewould like to determine the Grundy
number Gr ([n]), n ⩾ 0. It seems convenient to write ⟨n1, n2, . . . , nk⟩ = Gr ([n1, n2, . . . , nk]), saving a few symbols in some
strings of equalities. We note that ⟨0⟩ = 0, for any q.

For non-negative integers a and b, we use a⊕b for the bitwise addition of a and b (also called Nimber addition), and a⊗b
for the bitwise multiplication of a and b. Note that a + b = (a ⊕ b) + 2 (a ⊗ b) ⩾ a ⊕ b. Also, a + b ≡ (a ⊕ b) (mod 2).
We shall use the commutativity and associativity of bitwise addition, as well as the cancellation law: a ⊕ b = a ⊕ c ⇒

a ⊕ (a ⊕ b) = a ⊕ (a ⊕ c) ⇒ (a ⊕ a) ⊕ b = (a ⊕ a) ⊕ c ⇒ 0 ⊕ b = 0 ⊕ c ⇒ b = c.
For a positive integer n, let f (n) denote the number of non-zero bits in the binary representation of 2

⌊ n
2

⌋
. Thus, if n is

even, then f (n) is the number of non-zero bits in the binary representation of n, and if n is odd, then f (n) is the number of
non-zero bits in the binary representation of n ⊕ 1 = n − 1, and let g (n) = 1 if f (n) is even and g (n) = 0 if f (n) is odd.
Note that g (2k + 1) = g (2k).

A bit partition of a positive integerm, with f (m) ⩾ 2, is an ordered pair of positive integers [a, b] such that a+b = a⊕b =

m, a ⊗ b = 0, f (a + b) = f (a) + f (b), f (a) ⩾ 1, and f (b) ⩾ 1. It is obvious that when f (m) ⩾ 2, the positive integer m has
a bit partition.

We say that k is q-compliant if {Gr (n) : n ∈ Z, 0 ⩽ n < k} = {n ∈ Z : 0 ⩽ n < k} for the game Split-q-Nim. We say that
k = 2m is super- q-compliant if {Gr (2j) ,Gr (2j + 1)} = {2j, 2j + 1} for the game Split-q-Nim, for every integer j, 0 ⩽ j < m.
Obviously, if k is super-q-compliant, then k is q-compliant. Also, if k is q -compliant, then Gr (k) ⩾ k, for Split-q-Nim.

2. Split-2-Nim

The initial version we discuss is Split-2-Nim. The calculation of the Grundy numbers for q = 2 appears to be somewhat
different than the calculation of the Grundy numbers for other values of q.

Observation 1. For q = 2, it is trivial to verify that ⟨k⟩ = k for k ∈ {0, 1, 2, 3, 4, 5}. For general q, q > 0, ⟨k⟩ = k for
0 ⩽ k ⩽ q + 2.

Proof. If 0 ⩽ k ⩽ q + 1, any split [a, b], with a + b = k + q, has max {a, b} ⩾ k. Hence, no split is possible. When k = q + 2,
the only possible split is [q + 1, q + 1] and ⟨q + 1, q + 1⟩ = 0. For the special case q = 2, we note that the only split for
k = 5 is [3, 4] and ⟨3, 4⟩ = ⟨3⟩ ⊕ ⟨4⟩ = 3 ⊕ 4 = 7 ̸= 5. In all these cases, k cannot reach a position Q with Gr (Q ) = k and,
inductively, Gr (k) = k. ■

Lemma 2. Let k = 2m, m ∈ N, m ⩾ 3. Suppose that Gr(n) = n ⊕ g (n), for 1 ⩽ n < k. Then, Gr(k) = k ⊕ g (k).

Proof. From the hypotheses, Gr(n) = n ⊕ g (n), for 1 ⩽ n < k, and, thus, Gr(n) ∈ {n, n ⊕ 1} and k is super-2-compliant.
Note that for any n = 2t < k, if Gr(n) = n ⊕ g (n), then Gr(n + 1) = (n + 1) ⊕ g (n + 1) = (n + 1) ⊕ g (n), and

{Gr (n) ,Gr (n + 1)} = {n, n + 1}. Thus, {Gr (n) : n ∈ Z, 0 ⩽ n < k} = {n ∈ Z : 0 ⩽ n < k}.
Since ⟨a⟩ ⊕ ⟨b⟩ ∈ (a ⊕ b, a ⊕ b ⊕ 1), ⟨a⟩ ⊕ ⟨b⟩ ⩽ (a ⊕ b) + 1 = a + b − 2 (a ⊗ b) + 1. If a ⊗ b ⩾ 2, then

⟨a⟩ ⊕ ⟨b⟩ ⩽ a + b − 3 = 2m − 1.
If a⊗b = 1, then a and b are odd, and [a − 1, b − 1] is a bit partition of 2m. If g (a − 1) = g (b − 1) = 1, then g (2m) = 1

and ⟨a⟩⊕ ⟨b⟩ = (a ⊕ 1)⊕ (b ⊕ 1) = a⊕ b = 2m. If g (a − 1) = g (b − 1) = 0, then g (2m) = 1 and ⟨a⟩⊕ ⟨b⟩ = a⊕b = 2m.
If g (a − 1) ̸= g (b − 1), then g (2m) = 0 and ⟨a⟩ ⊕ ⟨b⟩ = a ⊕ b ⊕ 1 = 2m ⊕ 1 = 2m + 1.

If a ⊗ b = 0, then [a, b] is a bit partition of 2m + 2, and both a and b are even. Then, ⟨a⟩ ⊕ ⟨b⟩ ∈ {a ⊕ b, a ⊕ b ⊕ 1} =

{2m + 2, 2m + 3}.
In summary, for a + b = 2m, with a ⩾ 3 and b ⩾ 3:
(i) if g (2m) = 0, then ⟨a⟩ ⊕ ⟨b⟩ ∈ {0, 1, . . . , 2m − 1, 2m + 1, 2m + 2, 2m + 3}, and
(ii) if g (2m) = 1, then ⟨a⟩ ⊕ ⟨b⟩ ∈ {0, 1, . . . , 2m − 1, 2m, 2m + 2, 2m + 3}.
Combining these results with {Gr (n) : n ∈ Z, 0 ⩽ n < 2m} = {n ∈ Z : 0 ⩽ n < 2m}, we have established that Gr (2m) =

2m ⊕ g (2m). ■

To handle the odd cases, it is convenient to prove a more general lemma.

Lemma 3. Suppose that 2m is super-q-compliant, for q = 2s > 0, s ∈ N, and suppose that Gr (2m) = (2m)⊕t ∈ {2m, 2m + 1},
t ∈ {0, 1}. Then, Gr (2m + 1) = (2m + 1) ⊕ t ∈ {2m, 2m + 1}.

Proof. From the hypotheses, {Gr (n) : n ∈ Z, 0 ⩽ n < 2m + 1} = {n ∈ Z : 0 ⩽ n < 2m} ∪ {Gr (2m)}. Thus, from position
[2m + 1], we can reach positions with any of the numbers in the above set by removing coins from the pile. Consider a move
to [a, b], with a ⩾ q + 1 and b ⩾ q + 1, if such a move is possible. Without loss of generality, a is odd, and g (a − 1) = g (a).
Thus, a = q + 1 or [a − 1, b] is a possible move from [2m]. Note that ⟨d⟩ = d for 0 ⩽ d ⩽ q + 1.

If a = q+1, then b = 2m. Since q is even, (q + 1)⊕ (2m) = q⊕ (2m + 1) and, hence, ⟨a⟩⊕ ⟨b⟩ = (q + 1)⊕ ((2m) ⊕ t) =

((q + 1) ⊕ (2m))⊕t = (q ⊕ (2m + 1))⊕t = q⊕((2m + 1) ⊕ t). Since q ̸= 0, ⟨a⟩⊕⟨b⟩ = q⊕((2m + 1) ⊕ t) ̸= (2m + 1)⊕t .
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